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A B S T R A C T   

As rapid urbanization has drastically and widely altered the Earth’s surface, urbanization has become an 
important contributor to changes in land surface temperature (LST) and the urban thermal environment, which 
has increasingly become a focus of urban ecologists and environmentalists. The present study used one of the 
fastest-growing cities in Southwest China, Chengdu city, as an example to explore the urbanization pattern and 
its effects on surface urban heat islands (SUHIs). To analyze the temporal and spatial characteristics of urban 
expansion, land use or land cover (LULC) images were classified using a support vector machine (SVM) classifier 
from Landsat images in 2004–2018, with an overall accuracy of 0.94 and kappa coefficient of 0.90. According to 
the spatiotemporal LULC changes, Chengdu city expanded at a rapid pace from 80.43 km2/a to 210.50 km2/a in 
2004–2018, with an increasing reliance on vegetation area conversion. Spatially imbalanced expansion also 
occurred. The gravity center moved toward the southeast overall, and peripheral circle districts were the main 
force of Chengdu’s urban expansion compared to the slow-expanding core districts. An allometric model was 
used to analyze the urbanization pattern, and the results indicated that expansion in Chengdu city was far in 
excess of its corresponding population growth. The SUHI effect in Chengdu mostly deteriorated over time, and 
SUHI deterioration closely correlated with the urban expansion area rate and expansion intensity. Therefore, 
excess urbanization at the expense of vegetation decrease damages the urban ecological environment and ac-
celerates SUHI effects, which threaten habitat health and living comfort.   

1. Introduction 

Rapid urbanization has seriously changed the Earth’s surface due to 
the replacement of natural surfaces, such as vegetation areas, with man- 
made impervious surfaces, such as concrete and buildings [1–5]. 
Compared to vegetation surfaces, impervious surfaces emit and absorb 
more thermal energy, notably alter the surface thermal environment and 
greatly drive urban heat islands (UHIs), which are one of the most severe 
ecological and environmental land use or land cover change (LULC-
C)-related problems on the global scale [6,7], and impose a non-
negligible effect on human health [8,9]. The surface thermal 
environment manifesting the heat exchange balance between land and 
atmosphere can be quantified with the land surface temperature (LST). 
The UHIs effect, a phenomenon in which the temperature in urban areas 

is higher than other regions [10], reflecting urban surface thermal 
environment effects, can be quantitatively monitored and dynamically 
analyzed from the LST parameters, namely, surface UHIs (SUHIs), spe-
cifically representing the radiative temperature difference between 
urban and nonurban surfaces [11,12]. Although many scholars agree 
that urbanization relatively enhances UHIs effects, previous studies re-
ported inconsistent conclusions due the variety of geographical loca-
tions, natural and social environments, and other related factors [9, 
13–16]. Therefore, the spatiotemporal effect of urbanization should be 
further explored in a considered region using a relevant urbanization 
model and suitable environmental backgrounds. 

As one of the fastest urbanizing countries in the past 30 years, China 
experienced a 2.14% higher urbanization rate than the world average 
value, and Chinese urban areas are growing by 7.9% per year on average 
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[16,17]. Growth in China may remain the fastest worldwide over the 
next 50 years or more [18,19]. Accordingly, the thermal environment, 
especially the SUHI effect, in China is relatively more common and 
apparent than other regions or countries. This issue has drawn scholars 
to study the SUHI effect and urbanization in China, but these studies 
mostly focused on the most well-developed areas or mega-urban ag-
glomerations [7,14,20–22]. Underdeveloped areas in western China 
have been overlooked [23], and these areas mostly exhibit character-
istics of a relatively fragile ecology and high vulnerability to climate 
change impacts. Therefore, it is necessary to explore urbanization 
characteristics and their effects in regions that sensitive to global climate 
changes and easily occurring extreme disasters. 

Remote sensing is an efficient method to map and monitor complex 
regional and global land surface environments [24–26]. With advantage 
of reasonable spatial resolution and moderate revisiting frequency, 
moderate-spatial resolution satellite-based remote sensing, such as 
Landsat series, is widely used to facilitate LULCC monitoring in urban 
areas [27–29]. Ridd [28] determined that urban areas were generally 
covered by three material types, vegetation (V), impervious surfaces (I), 
and soil (S), i.e., the V–I–S model. Changes in impervious surfaces or 
built-up areas in urban areas are the most obvious responses to human 
activities, such as human population distribution. Therefore, impervious 
fraction mapping constitutes a key step in urbanization monitoring. 
Many studies has employed the V–I–S model for image classification to 
monitor LULCCs and extract impervious cover in urban environments to 
further explore urbanization based on series classification images 
[24–26,30,31]. Based on the V–I–S model, researchers have continu-
ously developed classification methods to detect impervious surfaces, 
such as the decision tree classifier [32], maximum likelihood classifier 
[25], spectral mixture analysis (SMA) and improved methods [26,28, 
33]. However, accurate land use type detection, especially impervious 
surfaces, remains a challenge due to the highly complicated surfaces in 
urban environments. 

The medium-resolution remote-sensing LST data commonly have 
advantages of suitable spatial resolution and ready accessibility to 
explore the urban SHUI effect. The LST retrieved from satellite-based 
thermal infrared (TIR) data always exhibits high accuracy, and corre-
sponding retrieval methods, such as the single-channel, split-window 
(SW) and multichannel methods, have reached a relatively mature 
development stage [34–41]. LST data retrieved from TIR data recorded 
by moderate-spatial resolution sensors, such as Advance Space-borne 
Thermal Emission and Reflection Radiance (ASTER), Thematic Mapper 
(TM) and Thermal Infrared (TIR) sensors, have enabled exploration of 
SUHI effects at the urban scale [10,42–45]. Landsat constellation has 
been emphasized very important to the SUHI knowledge by Zhou et al. 
[12] and they have indicated that almost 53% of researchers have use 
either one or multiple Landsat images in their SUHI studies. 

The present study selected an economic and trade hub in Southwest 
China, Chengdu, as a case study to explore the spatiotemporal charac-
teristics of urbanization, and the SUHI effect change tendency was 
considered. Furthermore, as feedback, better understanding of the ef-
fects of land use, especially impervious surface/built-up areas, will help 
urban land developers and planners regulate urban land and urban 
thermal environment planning. The land use maps and corresponding 
LST images for Chengdu city from 2004 to 2018 used in this study were 
obtained from Landsat series images and readily and historically avail-
able and economic data. The classifier and retrieval method are detailed 
in the methodology section, followed by the results and a discussion of 
urbanization in Chengdu city and its relationship with SUHI effects 
considering spatiotemporal changes. Finally, the Conclusion section 
provides a summary. 

2. Materials and methods 

2.1. Study area and data 

Chengdu (30◦05′N-31◦26′, 102◦54′E− 104◦53′E) is the capital of 
Sichuan Province in Southwest China, and the total area is approxi-
mately 12390 km2. With a typical continental monsoon climate in the 
northern temperate zone, the average temperature ranges from 5 ◦C in 
winter to 26 ◦C in summer. The annual precipitation reaches approxi-
mately 900 mm, and rainfall is primarily concentrated in July and 
August. Chengdu city is one of the most crowded cities in Southwest 
China, and has been approved by the State Council as the national high- 
tech and logistics base and business and transportation hub since 2015. 
This study focuses on the urban development area of Chengdu (Fig. 1), 
covering approximately 3677 km2, and considers 11 districts: five cen-
tral districts in the first circle, Jinjiang District (JJ), Wuhou District 
(WH), Qingyang District (QY), Jinniu District (JN), Chenghua District 
(CH); and six emerging suburban districts in the second circle, Pidu 
District (PD), Shuangliu District (SL), Wenjiang District (WJ), Xindu 
District (XD), Longquanyi District (LQY), and Qingbaijiang District 
(QBJ). This study examined Chengdu city, in which the landscape is 
mostly flat, with an average altitude of 524 m, ranging from 437 to 1042 
m, as shown in Fig. 1(c). There are few hills with basic trends along the 
eastern boundary of Chengdu city. 

Based on a previous study, Landsat data are a very effective and 
easily accessible satellite-based data source for land use mapping and 
thermal environment monitoring in urban areas [6,15,16]. The data 
collected in this study included Landsat 5 and 8 images, as detailed in 
Table 1. Since frequent clouds occurring in the Chengdu city, consid-
ering the cloud cover percentage (an acceptable level lower than 5%) 
and time space to implement the study, only four Landsat images ac-
quired in 2004, 2009, 2013 and 2018 were selected and downloaded 
from https://earthexplorer.usgs.gov/, including packaged multispectral 
(MS) data (including visible and near- and mid-infrared bands) and TIR 
data (Band 6 in Landsat 5, and Bands 10 and 11 in Landsat 8). The 
Landsat 8 images in Collection 1 were selected in this study, which has 
been implemented TIRs stray light correction and updated since 2017 
[46–48]. 

To explore urbanization characteristics and their effects on the 
thermal environment in urban areas, the study was implemented 
following the flowchart shown in Fig. 2. The process was divided into 
two sections: urbanization detection via LULCC and thermal environ-
ment change characterization considering LST variations in the study 
area. Since the Landsat images are obtained at about 11 a.m. (detailed in 
the fourth column of Table 1), the instantaneous SUHI effect is used to 
explore the urban thermal environment in this study, and furtherly 
discuss the urban thermal environment changes from 2004 to 2018. 
Essential preprocessing of the Landsat images, involving Google Earth 
imagery-based geometrical correction, radiometric calibration, and at-
mospheric correction, was performed before land use classification and 
LST retrieval. Because the MS and TIR bands exhibited different spatial 
resolutions, the images were all resampled to 30 spatial resolutions 
during preprocessing. Land use classification and LST retrieval are the 
key steps after image preprocessing. The LULC in the present study was 
classified from color images composited with the normalized difference 
vegetation index (NDVI), normalized difference built-up index (NDBI) 
and modified normalized difference water index (MNDWI) bands. The 
main steps implemented in this study are detailed below. To examine the 
rationality of city expansion, population information on the study area 
was selected from the Total Registered Households and Population over 
Years section of the 2019 Chengdu Statistical Yearbook. 

2.2. LULC classification 

Compared to other regions, a city is broadly defined as a permanent 
large settlement [16]. A four-LULC type classification system, including 
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water body, vegetation, impervious surface/built-up, and bare soil 
areas, was defined in the present study based on the land cover bio-
physical characteristics of Chengdu city and previous research, espe-
cially the V–I–S model. Impervious surface expansion is generally the 
most obvious representation of urban expansion in a city. Therefore, it is 
essential to precisely detect impervious surfaces. To differentiate the 
LULC from Landsat MS data, especially impervious surfaces in bare soil 
areas, color images were constructed with three index bands: NDVI, 
NDBI and MNDWI bands. The NDVI is a numerical indicator calculated 
by the visible and near-infrared bands of remote sensing data and has 
been broadly adopted to identify live green vegetation [49,50]. Zha 
et al. [51] first proposed the NDBI to automatically map urban areas 
using Landsat data, and it has remained a sufficient indicator in the 
identification of impervious areas. Han-Qiu [52] established the 
MNDWI based on the normalized difference water index (NDWI) algo-
rithm first proposed by McFeeters [53], which easily extracts water 
bodies from other background objects [54]. These three indicators, 
NDVI, NDBI, and MNDWI, were calculated with Equations (1)–(3): 

NDVI=
NIR − R
NIR+ R

(1)  

NDBI=
MIR − NIR
MIR+ NIR

(2)  

MNDWI=
G − MIR
G+MIR

(3)  

whereG, R, NIR, and MIR are the green band radiance, red band radi-
ance, NIR band radiance, and mid-infrared band radiance, respectively, 
in Landsat MS images, which were corrected and calibrated during 
image preprocessing. Composited images of the study area are shown in 
Fig. 3. 

Training regions that were representative of the four LULC types 
were first selected from the known area based on the characteristics of 
the four types referring to Google Earth images. The support vector 
machine (SVM) classifier was used as a typical and dependable super-
vised classification algorithm to enable a computer system to automat-
ically recognize pixels with the same feature and map LULC images. The 
classification results in 2018 were evaluated according to the 2018 high- 
spatial resolution Google Earth image with a spatial resolution greater 
than 1 m. This process randomly generated 791 sample points according 
to the area size of each type in the LULC images: 422 points for imper-
vious surfaces, 315 points for vegetation areas, 38 points for bare soil 
areas, and 16 points for water bodies. The land use types at these points 
were individually determined via manual visual interpretation in the 
high-resolution Google Earth imagery, which were used as validation 
samples. The accuracy of the 2018 classification map was considered the 
accuracy of the classification method used because Google Earth imag-
ery was hardly available in accordance with the Landsat images in this 
study. The total classification accuracy was estimated by the overall 
accuracy (OA, Equation (4)) and kappa coefficient (Ka, Equation (5)), 
and the classification accuracy of land use i was calculated by the pro-
ducer accuracy (PAi, Equation (6)) and user accuracy (UAi, Equation 
(7)). 

OA=

∑4

i
Mi

N
(4)  

Ka=
OA −

∑4

i
PiUi

N2

1 −

∑4

i
PiUi

N2

(5) 

Fig. 1. Location maps of the study area.  

Table 1 
Details of the Landsat images in this study.  

Satellite Path/ 
row 

Acquisition 
date 

Local 
time 

Spatial 
resolution (MS/ 
TIR) 

Cloud 
cover (%) 

Landsat 
5 

129/ 
39 

2004-12-07 11:19 30 m/120 m 0.12 

Landsat 
5 

129/ 
39 

2009-03-24 11:20 30 m/120 m 0 

Landsat 
8 

129/ 
39 

2013-04-20 11:35 30 m/100 m 4.66 

Landsat 
8 

129/ 
39 

2018-04-18 11:32 30 m/100 m 0.4  
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PAi =
Mi

Pi
(6)  

UAi =
Mi

Ui
(7)  

where Mi denotes the number of points correctly classified into category 
i, N is the total number of selected validated points, Pi is the number of 
sample points belonging to land use i according to reference Google 
Earth imagery, and Ui is the number of points classified into land use i 
among the classification results. 

2.3. Conversion of LULC 

Based on the LULC maps, an LULC transition matrix (Equation (8)) 
was calculated to quantitatively describe the conversion and direction 
among the various LULC types. Because the LULC maps were obtained at 
four time points, three transition matrices during the 2004–2009, 
2009–2013, and 2013–2018 periods for Chengdu city were summarized 
from spatial LULC transition maps. 

Atrans =

⎡

⎣
A11 ⋯ A1n
⋮ ⋱ ⋮
An1 ⋯ Ann

⎤

⎦ (8)  

where n is the total number of LULC types, Aij is a term of the matrix 
Atrans and represents the area transferring from LULC types i to j during 
the period from t to t+1. 

2.4. Quantification of the spatiotemporal characteristics of urban 
expansion 

Based on the LULC maps from 2004 to 2018, the areas of the four 
land use types were calculated in ArcMap software, especially imper-
vious surface/built-up areas, and any increase clearly represented urban 
expansion. Based on the impervious area, three indicators, the urbani-

zation growth index (UGI), change rate of impervious surface/built-up 
areas (Rt), and urbanization intensity index (UII), were employed to 
quantify urbanization in Chengdu city, defined as follows [55]: 

UGI=
sY2 − sY1

ΔY
(9)  

Rt =
sY2 − sY1

sY1

× 100 (10)  

UII=
sY2 − sY1

sY1

∗
1

ΔY
× 100 (11)  

where sY2 and sY1 are the impervious surface/built-up areas in Y2 and Y1, 
respectively, and ΔY is the interval from Y2 to Y1. To explore the 
directional characteristics of expansion in space, the area contributions 
of the eight directions to urbanization were calculated based on 
impervious surface maps extracted from LULC classification maps. The 
contribution in the Di direction was determined as follows: 

ω=
sDi

s
(12)  

where s is the total expansion area of impervious surfaces, and sDi is the 
area increase along direction Di. Since imbalanced spatial expansion can 
lead to a direction offset for the city center, the centroid method was 
applied to obtain the overall spatial movement of the Chengdu city 
center, as follows: 

Xt =
∑n

i=1
(Cit ∗ Xit)

/
∑n

i=1
Cit (13)  

Yt =
∑n

i=1
(Cit ∗ Yit)

/
∑n

i=1
Cit (14)  

where Xt and Yt are the x- and y-coordinate values, respectively, of the 
impervious surface center att, and Cit is the area of impervious surface i, 

Fig. 2. Flow chart to detect urbanization and urban thermal environment changes in Chengdu city and further explore their relationship in advance.  
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whose subcenter is (Xit , Yit) at t. 
City expansion exhibits a close relationship with population growth, 

and a good compatibility between these factors is expected for rational 
land use planning. The allometric model, as expressed in Equation (15), 
first proposed in the biological field and subsequently introduced into 
the human geography field [56,57], was employed to examine the 
expansion rationality in Chengdu city. 

A= aPb (15)  

where A is the impervious surface/built-up area, P is the urban area 
population, and a and b are regression parameters. In the equation, b is a 
key parameter that indicates the allometric relationship between A and 
P. Previous studies on urban areas in China indicated: when b = 0.9, the 
expansion of built-up areas fit well with the increase in population; 
when b < 0.9, negative allometric growth occurs, which means that the 
expansion of built-up areas is deficient for the increase in the corre-
sponding urban population; and when b > 0.9, positive allometric 
growth occurs, which suggests that built-up area expansion is super-

fluous to the increase in the corresponding urban population [58–60]. 

2.5. LST retrieval and normalization 

Landsat 5 and 8 TIR data were used to retrieve the LST in Chengdu 
city. There was one TIR (Band 6) band in the Landsat 5 data, and also 
one TIR band (Band 10) in the Landsat 8 data without potential cali-
bration risk due to the out-of-field stray light effect. Therefore, the ra-
diation transfer model (RTM) in the TIR band (Equation (16)) was used 
to retrieve the LST from Landsat 5 and Landsat 8 data. Based on Equa-
tion (16), the land surface emissivity (LSE, ελ) and three atmospheric 
parameters, τλ, Latm↓

λ , and Latm↑
λ , are necessary for LST retrieval from B(λ,

Ts). Following Planck’s law for blackbodies, for a given B(λ,Ts), LST (Ts) 
is the only variable in a certain TIR band with a known λ. According to 
the metadata of Landsat 5 and Landsat 8 images, the three atmospheric 
parameters of each Landsat image were obtained from the NASA website 
(https://atmcorr.gsfc.nasa.gov/), and the LSE was retrieved by the NDVI 
threshold algorithm which was formulated by Sobrino and Raissouni 
[61] and has already been applied to various sensors data for its 

Fig. 3. Index-composited images of the study area. (a), (b), (c), and (d) show images in 2004, 2009, 2013, and 2018.  
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simplicity [61–64]. 

LSensor
λ =

[
ελ ∗ B

(
λ, Ts

)
+
(
1 − ελ

)
∗ Latm↓

λ

)]
∗ τλ + Latm↑

λ (16) 

The LST exhibits high temporal heterogeneity, and the LST images in 
this study were not obtained at same months of year (seeing Table 1) for 
the data quality control over cloud-cover in images. Therefore, to avoid 
biases caused by temperature variation over time, the normalized LST, 
as the thermal environment index (TEI) [65], was employed to analyze 
the urban thermal environment in this study as follows: 

Tnorm i =
Ts i − Ts min

Ts max − Ts min
× 100 (17)  

where Tnorm i is the normalized LST value in the i-th pixel, Ts max and 
Ts min are the maximum and minimum LSTs, respectively, in each LST 
image, that are commonly found in impervious and waterbody pixels, 
respectively, and Ts i is the LST value in the i-th pixel. Therefore, the 
normalized LST in the pixels ranged from 0 to 100. 

2.6. Thermal environment change detection 

Based on the TEI, heat island grades were defined to detect changes 
in the urban thermal environment and SUHIs with urban expansion in 
Chengdu city from 2004 to 2018. The heat island grades [66,67] ranged 
from 1 to 6 (Table 2) according to the mean (Equation (18)) and stan-
dard deviation (STD, Equation (19)) of the normalized LST images. 

u=

∑n

i=1
Tnorm i

n
(18)  

STD=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Tnormi − u)

2

n

√
√
√
√
√

(19)  

where n is the total number of pixels in the normalized LST image, and u 
and STD are the mean and standard deviation, respectively. 

3. Results and discussion 

3.1. Detection of LULC changes 

The classification accuracy was evaluated considering 791 points 
that were randomly selected from the 2018 LULC maps and reclassified 
via manual visual interpretation based on the 2018 high-resolution 
Google Earth image. A class confusion matrix was calculated between 
the LULC classification results and manual visual interpretation reclas-
sification results. The overall evaluation summarized from the class 
confusion matrix indicated that the classifier performed well with an 
overall accuracy of 0.94 and kappa coefficient of 0.90. The producer and 
user accuracies of each land use type were calculated, as listed in 
Table 3. Except for bare soil, the producer accuracy of the other three 
types was higher than 87%. The user accuracy of all land cover types was 
higher than 91%. Although the spectra of bare soil areas and built-up/ 
impervious surfaces exhibited high similarity that commonly caused a 
lower distinguishability, the producer and user accuracies were higher 

than 78.9%, and the accuracy of built-up/impervious surfaces, which 
was the main focus in this study, was higher than 91%. Therefore, the 
SVM classifier based on the images composited with the three indicators 
was effective in the study area and performed sufficiently to explore the 
research issue. 

Based on the 2004, 2009, 2013, and 2018 LULC maps, LULC changes 
were detected by the proportion of the changing parts to the total area of 
Chengdu city, as shown in Fig. 4. Fig. 4 indicates that the LULC change 
proportion was the lowest from 2009 to 2013 at 11.30% and was higher 
during the other two periods, 2004–2009 (32.57%) and 2013–2018 
(28.63%). Impervious surfaces were the only LULC type that continu-
ously increased from 2004 to 2018. Expansion stabilized during the 
2004–2009 and 2009–2013 periods and boomed from 2013 to 2018. 
Bare soil in Chengdu city was the only LULC type in which the area 
continuously decreased. The vegetation area change percentage 
exhibited larger fluctuations with an increase of 33% from 2004 to 2009, 
− 31% from 2009 to 2013, and − 43% from 2013 to 2018. In contrast, the 
water body area changed slightly from 2004 to 2018 (see Fig. 4). 

To explore the details of LULC changes and further examine the LULC 
conversion trend and intensity, a transition matrix of LULC changes 
during the different periods was calculated, as summarized in Table 4. 
The transition matrix revealed that the LULC in Chengdu city changed 
dramatically from 2004 to 2018, especially the conversion of impervious 
surface/built-up, vegetation, and bare soil areas. From 2004 to 2009, 
1241.94 km2 of bare soil, ~79% of its area in 2004, was converted into 
other LULC types, primarily vegetation (~77%) and impervious surface/ 
built-up areas (~22%), which was the largest area conversion during 
this period. The conversions from vegetation and impervious surface/ 
built-up areas were 78.17 and 282.53 km2, respectively, which 
accounted for less than 20% (19.9% and 15.5%, respectively) of their 
areas in 2004. Impervious surface/built-up areas were primarily con-
verted into vegetation areas, which occupied 86% of its conversion area. 
Meanwhile, vegetation areas were largely occupied by impervious 
surface/built-up (167.32 km2) and bare soil (112.78 km2) areas. The net 
area converted among these three LULC types reached 269.30 km2 

(impervious surface/built-up areas from bare soil areas), 99.89 km2 

(impervious surface/built-up areas from vegetation areas) and 848.6 
km2 (vegetation areas from bare soil areas). During the 2004–2009 
period, compared to a decreased bare soil area of 1117.45 km2, imper-
vious surface/built-up and vegetation areas increased 402.16 and 
795.61 km2, respectively. Furthermore, ~67% and ~25% of the 

Table 2 
Heat island grade levels.  

Interval Level Thermal environment description 

[0, u-1.5*STD) 1 Strong cold island zone 
[u-1.5*STD, u-0.75*STD) 2 General cold island zone 
[u-0.75*STD, u) 3 Colder mid-temperature zone 
[u, u+0.75*STD) 4 Hotter mid-temperature zone 
[u+0.75*STD, u+1.5*STD) 5 General heat island zone 
[u+1.5*STD, 1] 6 Strong heat island zone  

Table 3 
LULC classification evaluation.  

Evaluation indicator Built-up Vegetation Bare soil Water body 

Producer accuracy 99.76 89.52 78.95 87.50 
User accuracy 91.13 99.65 93.75 99.99  

Fig. 4. LULC change percentages during the different time periods.  
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impervious surface/built-up area increase was converted from bare soil 
and vegetation areas, respectively. Moreover, the area converted from 
bare soil not only compensated for the vegetation area loss that con-
verted into impervious surface/built-up areas but also accounted for 
nearly 100% of the vegetation increase. 

During the 2009–2013 and 2013–2018 periods, the LULC change 
rates were lower than the rate from 2004 to 2009, as indicated by Fig. 4. 
Similarly, the main LULC type conversion also occurred among imper-
vious surface/built-up, vegetation and bare soil areas. From 2009 to 
2013, 457.66 km2 of vegetation area was converted into impervious 
surface/built-up areas, accounting for ~68% of the vegetation conver-
sion. As a compensation, 316.44 km2 of vegetation area was converted 
from bare soil areas, ~81% of the bare soil conversion. Therefore, 95% 
of the impervious surface/built-up area increase from 2009 to 2013 was 
derived from a net area of 327.17 km2 that was converted from vege-
tation into impervious surface/built-up areas. Despite the bare soil- 
related compensation, the vegetation area decreased 226.79 km2. The 
impervious surface/built-up area increase tripled between 2009-2013 
and 2013–2018. Of this notable increase, ~81% (855.71 km2) was 
converted from vegetation areas, and the remainder was mostly from 
bare soil. Compared to the 2009–2013 period, conversion among all of 
the LULC types occurred from other LULC types into impervious 
surface/built-up areas, as shown in Fig. 4 and Table 4. Moreover, the 
compensation phenomenon (conversion from bare soil into vegetation) 
hardly occurred, with a net conversion area of 5.65 km2 from bare soil 
into vegetation. 

The LULC changes during the three periods clearly revealed that 
impervious surface/built-up areas continuously, and even dramatically, 
increased, especially from 2013 to 2018, and expansion increasingly 
relied on the net conversion area from vegetation. In contrast, the 
vegetation area shifted from a considerable increase to a notable 
decrease due to the area loss primarily into impervious surface/built-up 
areas and a sharp reduction in compensation from bare soil. Vegetation 
generally covers arable land, woodlands and grasslands, which are 
crucial to the ecological environment and grain yield. Therefore, rapid 
urbanization in Chengdu city, as indicated by impervious surface/built- 
up area expansion, directly threatens the city’s ecological environment 
and food security. 

3.2. Analysis of urban sprawl spatiotemporal characteristics 

Urbanization in this study was analyzed from impervious surface 
expansion in the city. Fig. 5 and Table 5 indicate the spatial expansion 
from 2004 to 2018. Spatial expansion in Chengdu city (Fig. 5), as 

indicated by impervious surface/built-up area expansion, basically 
occurred around the main urban area and point-axis new urban district 
from 2004 to 2018. From 2004 to 2013, the urban area expanded out-
ward from the city center annularly and was primarily characterized by 
cooperative development and renewal. The earlier built-up area increase 
remained relatively stable, at 402.16 km2 from 2004 to 2009 and 
345.33 km2 from 2009 to 2013, and the increase primarily depended on 
bare soil conversion, especially from 2004 to 2009. Then, from 2013 to 
2018, the city experienced high-speed denotative expansion, and the 
built-up area increase reached 1052.51 km2 over the area increase sum 
during the first two periods. The UGI in Table 5 clearly indicates that the 
average expansion area steadily increased annually, with leapfrog 
growth from 2013 to 2018. The UGI reached 210.50 km2/a, more than 
twice the UGI during the first two periods. The urbanization intensity in 
Chengdu city, which was characterized by the change rate of impervious 
surface/built-up areas (Rt) and UII in Table 5, decelerated between 
2004-2009 and 2009–2013 then increased from 2013 to 2018. 

Fig. 6 clearly shows that expansion in Chengdu city exhibited a 
spatial tendency over time. From 2004 to 2009, the two greatest con-
tributions to city expansion originated from the northwest and north-
east, with contribution rates of 17.38% and 14.77%, respectively. The 
northern part of Chengdu city contributed only 6.98%, which was much 
lower than the other relatively adjacent parts. In the other two stages, 
expansion exhibited a higher orientation and was primarily dominated 
by four directions: from 2009 to 2013, the northwest, west, southwest, 
and south directions, and from 2013 to 2018, the northeast, east, 
southeast, and south directions. Therefore, urbanization in Chengdu city 
occurred dramatically uneven in its scope and time scale from 2004 to 
2018, especially from 2013 to 2018, when expansion dominated toward 
the east and south, probably followed urban spatial development pol-
icies: moving to the east, spreading in the south, holding in the west, 
rectifying in the north, and optimizing in the center. Different expan-
sions occurred in the 11 districts in the Chengdu main city. SL is clearly 
identified in Fig. 7 by its highly notable impervious surface/built-up 

Table 4 
Conversion matrix of the LULC from 2004 to 2018 (unit: km2).   

2009 

Built-up Water body Vegetation Bare soil 

2004 Built-up 313.53 2.94 67.43 7.81 
Water body 35.91 10.31 49.33 3.91 
Vegetation 167.32 2.43 1329.83 112.78 
Bare Soil 277.11 3.46 961.38 332.04 

2009  2013 
Built-up Water body Vegetation Bare soil 

Built-up 608.16 18.36 130.48 36.86 
Water body 3.45 11.88 3.52 0.29 
Vegetation 457.66 55.25 1730.73 164.33 
Bare Soil 69.92 3.79 316.44 66.38 

2013  2018 
Built-up Water body Vegetation Bare soil 

Built-up 1033.48 10.29 72.26 23.16 
Water body 36.41 32.40 19.21 1.26 
Vegetation 927.98 18.29 1158.46 76.44 
Bare Soil 193.83 1.26 28.80 43.96  

Fig. 5. Impervious surface expansion in Chengdu city.  

Table 5 
Impervious surface/built-up area expansion rate and intensity.  

Periods Built-up area increase (km2) UGI (km2/a) Rt (%) UII (%) 

2004–2009 402.16 80.43 102.67% 20.53% 
2009–2013 345.33 86.33 43.50% 10.88% 
2013–2018 1052.51 210.50 92.39% 18.48%  
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area expansion during the three periods, especially from 2013 to 2018. 
Along with SL, XD, PD, and LQY are generally districts with an expan-
sion area larger than the average area during the three periods. JJ and 
QY were also distinguished by their smaller impervious surface area 
expansion. The gaps between the largest and smallest area expansions 
grew over time, from 87.80 km2 in 2004– 2009 and 102.42 km2 in 
2009–2013 to 350.29 km2 in 2013– 2019. 

Depending on the contribution rate of each district (Fig. 8), all of the 
main districts in Chengdu city were graded into three levels: most 
powerful expansion, SL district; basically stagnant districts, including 
JJ, QY, JN, WH, and CH; and all remaining districts with steady 

expansion. Considering the above, city expansion could be characterized 
as a cool center accompanying a hot surrounding area in space, which 
agrees well with the traditional two-circle pattern of Chengdu city. The 
centroid analysis results in Fig. 8 indicate that expansion in Chengdu 
city occurred spatially unbalanced as the gravity center moved notably 
with a total southeast offset from 2004 to 2018. Therefore, Chengdu city 
totally expanded toward the southeast, which may be decomposed into 
southward and eastward expansion. SL expansion yielded the greatest 
contribution to southward expansion, and eastward expansion primarily 
determined the overall southern district expansion, including XD, QBJ, 
and LQY, especially from 2013 to 2018, in which the gravity center of 

Fig. 6. Expansion area contribution rate in the different directions.  

Fig. 7. Impervious surface expansion in each district.  

Fig. 8. Built-up area expansion ratio in each district.  
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Chengdu city experienced an offset of 3608 m, the greatest offset (the 
central subfigure in Fig. 9). Focusing on each district, Fig. 9(a–k) show 
unbalanced expansion considering gravity center movement. Compared 
to the other districts, the gravity centers of QBJ (subfigure c) and SL 
(subfigure k) exhibited the most notable offsets. Moreover, approxi-
mately consistent with the contribution rate to city expansion, the 
gravity centers of WJ, PD, XD, and LQY moved further than JN, CH, QY, 
WH and JJ, which are all located at the cool expansion center of 
Chengdu city. According to the gravity center trajectory in Fig. 9, all 
gravity centers moved along the major axis of the district polygons, 
which indicates that the districts of Chengdu city predominantly 
expanded along the major axis direction from 2004 to 2018. Addition-
ally, the gravity center of the built-up area in each district moved toward 
the geometric center over time, a stark proof that the urban planning 
and architectural complex layout in each district became increasingly 
reasonable and balanced at the district scale. 

3.3. Exploration of the urban expansion rationality 

The impervious surface area increase was calculated based on the 
LULC maps, as summarized in Table 6. The built-up area in Chengdu city 
quintupled from 391.70 km2 in 2004–2191.70 km2 in 2018, with a total 
expansion of 1800 km2, but the population in the corresponding districts 
increased by only approximately 2.47 million, which was ~40% of the 
2004 population (Table 6). Therefore, an allometric model was intro-
duced to explore the relationship between urban expansion and popu-
lation growth, examine resource efficiency and further explore the 
rationality of urban land planning. According to the Chengdu Statistical 

Yearbook, the allometric model was fitted with the following equation: 

A= 5.1969e − 10 ∗ P4.31042 (20) 

The fitting equation attained an R-squared value of 0.987 and an F 
value of 311.08 (p = 0.0032 < 0.01) in analysis of variance (ANOVA). 
The b coefficient of the allometric model (A = aPb) was 4.31, with a T 
value of 11.04 (p = 0.0081 < 0.01) during variable significance testing 
(T test). The b value was much larger than 0.9, which suggests that 
positive allometric growth occurred in Chengdu city. This result in-
dicates that the built-up area expansion of Chengdu city was a surplus 
and excessive for the population increase. Rapid built-up area expan-
sion, accompanied by slower population growth, can cause excessive 
coverage, extensive land use, and land resource waste. Additionally, the 
low land use efficiency in Chengdu probably even influenced the urban 
ecological environment and lowered the quality of life of inhabitants. 

Fig. 9. Gravity center movement in the city from 2004 to 2018. The center indicates the movement in Chengdu city, surrounded by movement maps of the 11 
districts: PD (a), XD (b), QBJ (c), WJ (d), JN (e), CH (f), QY (g), WH (h), JJ (i), LQY (j), and SL (k). 

Table 6 
Impervious surface/built-up area and increase and population information for 
Chengdu.  

Year Built-up area (km2) Population (10000 people) 

2004 391.70 604.01 
2009 793.86 667.90 
2013 1139.19 715.37 
2018 2191.70 851.16  
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3.4. Influence on the urban thermal environment 

Based on the TEI images, the thermal environment in Chengdu city 
was divided according to the six heat island grade levels (Fig. 9): strong 
cold island, general cold island, colder mid-temperature, hotter mid- 
temperature, general heat island, and strong heat island zones. From 
2004 to 2018, the heated area, including the hotter mid-temperature, 
general heat island and strong heat island zones, increased from 
1668.76 to 1781.34 km2, and the SUHI phenomenon occurred increas-
ingly frequently in a widespread space, especially strong heat island 
zone coverage, which was very significant (Fig. 10). According to the 
area percentage changes (Fig. 11), from 2004 to 2018, the strong cold 
island and strong heat island zones generally constituted the lowest 
proportion, the strong cold island zone varied between 4% and 5%, and 
the strong heat island zone fluctuated at 7%. Compared to the strong 
cold island and strong heat island zones, the general cold island and 
general heat island zones attained larger area percentages, ranging from 
17% to 19% and 13%–16%, respectively. The colder and hotter mid- 
temperature zones accounted for the highest area ratios, ranging from 
27 to 34% and 25–27%, respectively, which are all areas potentially 

Fig. 10. Distribution of SUHIs in the study area. Subfigures (a) to (d) show 2004, 2009, 2013, and 2018.  

Fig. 11. Area percentage changes at the different heat levels.  
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degenerating into the hotter mid-temperature zone. The SUHI zone, 
including the hotter mid-temperature, general heat island and strong 
heat island zones, generally exhibited a higher trend from 2004 to 2018, 
and the area percentage increased from 45.37% to 48.43% (Fig. 11). 
Therefore, the SUHI effect significantly increased and caused increasing 
urban thermal environmental degradation in Chengdu city. 

Furthermore, the relationship between urban thermal environmental 
degradation and urban expansion was examined by comparing the SUHI 
changes to the built-up area increase, UGI, the change rate of built-up 
areas (Rt) and UII, as shown in Fig. 12. The line of SUHI changes in-
dicates that local fluctuations occurred in the overall increasing trend: 
the SUHI effect increased from 2004 to 2009 with a total area growth of 
2.62% in Chengdu city; subsequently, this situation improved with an 
increase of − 2.78% from 2009 to 2013; and unfortunately, these con-
ditions steadily deteriorated with an increase of 3.23% from 2013 to 
2018. Fig. 12 indicates that this fluctuation agreed much better with the 
urban expansion rate and intensity indices Rt and UII than the built-up 
increase and UGI. Moreover, Correlation analysis indicated that the 
SUHI was strongly related to Rt and UII with a correlation coefficient 
>95% (96.77% between SUHI and Rt, 95.69% between SUHI and UII), 
while built-up area increase and UGI with correlation coefficients of 
63.47% and 54.39%, respectively. This great agreement and strong 
correlation indicate that the urban expansion rate and intensity notably 
affected the SUHIs in Chengdu city, suggesting that urbanization ac-
celeration creates urban thermal environment risk. Additionally, the 
turning point from 2009 to 2013 of slow urban expansion (Rt = 43.50%, 

and UII = 10.87%) accompanied by weakened SUHI effects (− 2.78%), 
indicates that a potential balance between urban expansion and the 
urban thermal environment can occur, probably by controlling the 
expansion intensity and optimized urban planning. Compared to the 
2004–2009 and 2013–2018 periods, the large conversion (316.44 km2) 
from bare soil into vegetation areas as compensation probably alleviated 
the SUHI effect intensity from 2009 to 2013 because urban vegetation 
has been verified as a mitigating factor through its increased thermal 
regulation via evapotranspiration and the provision of shade [68–70]. 
However, during the next period, 2013–2018, urban expansion 
increasingly relied on net area conversion from vegetation areas, which 
sharply reduced the bare soil-provided compensation, leading to a 
sudden urban thermal environmental deterioration, as indicated by an 
SUHI area rate increase of 3.23%. Therefore, the LULC conversion 
pattern in the urbanization process seriously affected the urban thermal 
environment. 

Although China was the most actively-studied country of SUHI 
researched after 2000, they preferred to focus on large megacities in 
China [71–74]. A city-based statistical analysis implemented by Zhou 
et al. [12] has indicated that Beijing, Shanghai, Nanjing, Guangzhou, 
and Wuhan are the top 5 Chinese cities with the largest number of SUHI 
studies. Ye et al. [74] explored the urban thermal environment changes 
during rapid urbanization in the Chinese five largest megacities, Beijing, 
Tianjin, Shanghai, Guangzhou, and Shenzhen. It is found that those 
megacities experienced high-speed expansion with a great reduce of 
urban green space from 2000 to 2010, and from 2010 to 2020, stepped 

Fig. 12. Relationship between SUHIs and urban expansion. (a) to (d) show the relationship between built-up changes in surface urban heat islands (SUHIs, %) and 
built-up area increases (km2), UGI (km2/a), Rt (%) and UII (%), respectively. 
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into mature stage of urbanization with a low-speed expansion. In the 
earlier stages of urbanization, the urban growth can dramatically in-
crease the SUHI extent and intensity, which have also been confirmed in 
previous study [22,75–77]. While in the mature stage of urbanization, 
the urbanization effect on SUHI becomes gentle, and is mostly regulated 
by the cooling effect of the increasing urban green space. According to 
the impervious surface expansion and LULC changes from 2004 to 2018, 
Chengdu city, located at the relatively undeveloped Southwest China, 
step into the earlier stages of urbanization after 2013, which means 
Chengdu city steps into high-speed expansion stages later a decade or 
later than those developed large megacities in China. In this stage, it is a 
severe test to relieve the drastic SHUI effects, one intractable 
eco-environmental consequences of urbanization. It has been demon-
strated that ecological land, including water bodies, forest, farmland and 
urban green space, have a positive effect on mitigating the region’s high 
temperature [12,76]. Therefore, optimizing the landscape composition 
and spatial configuration, is the most probable and effective way for 
practitioners to formulate the associated mitigation and adaptation 
strategies. 

4. Conclusions 

According to the urban expansion spatiotemporal characteristics 
detected with the Landsat-LULC classification results, the urbanization 
pattern was examined to analyze the expansion rationality and further 
explore the effect on the urban thermal environment reflected by the 
LST data retrieved from Landsat images. Our results reveal that from 
2004 to 2018, urban expansion in Chengdu city exhibited overall 
imbalance in time and space, and the gravity center of each district 
mostly exhibited a notable offset toward the district center, leading to 
local district balance development. The source of urban expansion 
changed from the dominant conversion from bare soil in the 2004–2009 
period to a considerable conversion from bare soil and vegetation areas 
in the 2009–2013 period, then to absolute dominant conversion (85%) 
from vegetation in the 2013–2018 period, stepped into early urbaniza-
tion stage with high-speed urban expansion. Based on model analysis, 
urban expansion in Chengdu city experienced an excessive urbanization 
pattern, and urban expansion far extended beyond the scope of urban 
population growth demands. In contrast, based on an analysis of SUHI 
changes with the urban expansion rate and intensity, urban sprawl 
imposed a serious promoting effect on SUHI acceleration in Chengdu 
city. Moreover, during recent rapid urbanization in Chengdu, the 
increasing reliance on conversion from vegetation areas, the effective 
and typical urban element weakening and moderating SUHIs, further 
accelerated SUHI effects. As a result, excess expansion occurred at the 
expense of harm to the urban ecological and thermal environments in 
Chengdu city, which further threatened the quality of life and human 
health of residents from the aspects of energy consumption, air and 
water quality, living comfort, and increasing thermal-related disease 
risks. Therefore, land use strategy and urban planning efforts should be 
optimized and revised consistently to achieve a balance among urban-
ization, population increase, urban ecological and thermal environment, 
and prevent extensive land use and land resource waste, which are 
crucial to ensure urban health and ecology and increase the environ-
ment’s robustness to global climate change and frequent local extreme 
meteorological disasters. 
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