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The 2015/16 El Ni~no brought severe drought and record-breaking temperatures in the
tropics. Here, using satellite-based L-band microwave vegetation optical depth, we
mapped changes of above-ground biomass (AGB) during the drought and in subse-
quent years up to 2019. Over more than 60% of drought-affected intact forests, AGB
reduced during the drought, except in the wettest part of the central Amazon, where it
declined 1 y later. By the end of 2019, only 40% of AGB reduced intact forests had
fully recovered to the predrought level. Using random-forest models, we found that the
magnitude of AGB losses during the drought was mainly associated with regionally dis-
tinct patterns of soil water deficits and soil clay content. For the AGB recovery, we
found strong influences of AGB losses during the drought and of γ. γ is a parameter
related to canopy structure and is defined as the ratio of two relative height (RH) met-
rics of Geoscience Laser Altimeter System (GLAS) waveform data—RH25 (25% energy
return height) and RH100 (100% energy return height; i.e., top canopy height). A high
γ may reflect forests with a tall understory, thick and closed canopy, and/or without
degradation. Such forests with a high γ (γ ≥ 0.3) appear to have a stronger capacity to
recover than low-γ ones. Our results highlight the importance of forest structure when
predicting the consequences of future drought stress in the tropics.
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Tropical forests hold the largest biomass pool on Earth and account for more than
one-third of the total global net primary productivity (NPP) (1). Small changes in their
growth and mortality rates can substantially affect their carbon balance, with a global
impact on the growth rate of atmospheric CO2 (2). The El Ni~no-Southern Oscillation
leads to droughts impacting highly productive tropical forests, compounded with fires
and increased pathogens and insect attacks (3), which enhance tree mortality and
reduce carbon storage, weakening the tropical forest carbon sink (4, 5). Previous obser-
vational and modeling studies reported that tropical regions switched from a carbon
sink to source as a result of drought associated with the severe El Ni~no event in 2015
to 2016 (6–8). However, few studies have explored the factors that control the spatial
and temporal variations in forest carbon loss and gains during and subsequent recovery
patterns.
The 2015/16 El Ni~no brought record-breaking temperatures and water deficits in

the tropics. Warmer and drier conditions are close to those anticipated in future warm-
ing scenarios (9). Increases in the severity, duration, and frequency of drought and heat
stress associated with climate change could fundamentally alter the community compo-
sition, structure, and biogeography of forests (10, 11). The recently available L-band
microwave vegetation optical depth (L-VOD) observation allows us to monitor short-
term and long-term responses of biomass to such a major climate disturbance by
capturing above-ground biomass (AGB) changes with less saturation than other
satellite-based proxies. The short-term response to drought is usually a decline in pho-
tosynthesis due to stomata closure and impaired hydraulic transport from soil-moisture
declines, monitored through field and satellite observations during drought, except in
some ever-wet regions, where enhanced radiation can locally increase photosynthesis or
when drought is not too severe (12–14). The long-term response involves tree mortal-
ity, changes in forest structure, and recruitment, which persist for several years after
drought (8, 15).
Using random forest (RF) models, a machine-learning algorithm, we identify here

the key climatic, edaphic, and biotic factors controlling regional declines and subse-
quent recovery of biomass across intact tropical forests after the 2015/16 El Ni~no
event. We use the large-scale Lidar observation of forest structure as a variable to help
explain the postdrought biomass variations because legacy impacts of drought affect
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not only mortality and growth of individual trees, but also
recruitment and community composition (11).

Results

Severity, Duration, and Onset Timing of 2015/16 Drought. We
assess the extent and severity of the 2015/16 drought using the
standardized anomaly of cumulative water deficits (ACWD)
derived from monthly precipitation measured by the Tropical
Rainfall Measuring Mission (TRMM) and evapotranspiration
(ET) from the Global Land Evaporation Amsterdam Model
(GLEAM) (16) (Materials and Methods). We focus on the tropi-
cal intact evergreen forests, using a conservative intact forest-cover
mask to avoid misclassification of drought over nonforested
or anthropogenic disturbance-affected regions (Materials and
Methods). After mid-2015, more than 55% of tropical intact ever-
green forests in South America (2.53 million km2), 34% in Africa
(0.40 million km2), and 42% in Southeast Asia (0.19 million
km2) were exposed to ACWD < �1 SD for more than 3 mo
(the SD being for the period 2010 through 2019 when satellite
AGB data are available). The patterns shown in Fig. 1 illustrate
the severity (Fig. 1A), duration (Fig. 1B), and onset time (Fig.
1C) of the 2015/16 drought. The drought first hit Southeast
Asia, then Africa and South America (Fig. 1C). Drought duration
and severity differed spatially, and the areas under more severe
drought tended to have a longer-lasting exposure. The epicenter
of drought was in central Amazonia, where rainforests experi-
enced ACWD < �2 SD for more than 8 mo. By contrast, the
drought was less severe in eastern Amazonia and in most parts of
Africa and was relatively short-lasting (less than 6 mo) in western
Africa and Southeast Asia. Note that using the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) ET product instead
of GLEAM to calculate ACWD gives similar patterns of drought
severity and duration (SI Appendix, Fig. S1).

Changes in AGB During and After Drought. We examine the
impact of 2015/16 drought on forest AGB using L-VOD
remote-sensing data from the Soil Moisture and Ocean Salinity

(SMOS) satellite (17). L-VOD may respond not only to vege-
tation, but also to vegetation water-content dynamics (18). In
order to remove a possible contribution of vegetation water-
content variation to vegetation optical depth (VOD) changes,
we use multiple regressions of VOD against the normalized dif-
ference water index (a proxy of water content of whole plant)
and the normalized difference vegetation index (a proxy of
vegetation-leaf biomass) (see details in SI Appendix, Text S1
and Fig. S2). The similar results of L-VOD AGB changes with-
out and with correction for water content (SI Appendix, Fig.
S3) confirm that the year-to-year changes in L-VOD mainly
reflect changes in AGB, being slightly affected by changes in
water content on interannual scales.

Changes in AGB stocks during the 2015/16 drought period,
relative to the same period during the predrought year
(ΔAGB14/15!15/16; see Materials and Methods for the definition
of this notation) are calculated for 25-km pixels over tropical
intact evergreen forests exposed to drought. The results shown
in Fig. 2A indicate an immediate AGB reduction during the
2015/16 drought period over more than 60% of drought-
affected intact forests, particularly in southeastern Amazonia
and in Africa and Borneo of Southeast Asia. One exception is
the “ever-wet” rainforest region of central Amazonia, which
showed an increase in AGB during the drought. Previous stud-
ies observed lagged tree mortality after drought, yet with no sig-
nificant reduction in the growth of surviving trees, e.g., at the
Caxiuan~a rainfall exclusion experiment (19) and at ecological
monitoring sites in the Amazon during the 2010 drought (20),
as well as for in a variety of tree genera globally (21). The lack of
suppressed tree growth or enhanced growth during the drought in
the ever-wet part of the Amazon may be due to sustained canopy
photosynthetic capacity (22, 23) from greater radiation availability
(24), coordinated with the flushing of young and more efficient
leaves in the early drought stages (25, 26) and higher vapor pres-
sure deficit (VPD), resulting in an increase of water-use efficiency
offsetting the regulation of stomatal closure, leading to a net
increase of canopy photosynthesis (27).

Fig. 1. Spatial patterns of the severity (A), duration (B), and onset timing (C) of the 2015/16 drought over the tropical evergreen forests. The severity, dura-
tion, and onset of drought are identified based on the ACWD. Left shows the fractional area of tropical forests sorted into different categories of drought
severity, duration, and onset timing. In penal C, JFM represents January, February, March; AMJ represents April, May and June; JAS represents July, August
and September, OND represents October, November and December. The fractional area is split into values for three continents, i.e., South America (SA),
Africa (AF), and Southeast Asia (SEA). The gray areas are the areas where the ACWD is greater than �1 (i.e., non-drought-affected region). The non-forest-
dominated regions, forest-losses regions, flooded, and lake areas are masked out.
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The postdrought trajectories of AGB are shown in Fig. 2 B
and C, revealing complex patterns that differ among regions.
On the one hand, a lagged and persistent decrease in AGB was
observed after the termination of the 2015/16 drought in
north-central and eastern Amazonian and western Congo for-
ests (Fig. 2B), despite the gradual recovery of rainfall and no

new drought event (SI Appendix, Fig. S4). The occurrence of
fires in subsequent years—in particular, during 2017/18—may
be partly responsible for additional AGB reductions after the
drought—for example, in the eastern Amazon (SI Appendix,
Fig. S5). A lagged decrease of AGB is consistent with findings
based on satellite laser altimeter data of a lagged loss of height

Fig. 2. Spatial patterns of forest AGB changes during and after the drought. (A) Changes in AGB over the drought period in 2015/16, relative to AGB over
the same period in 2014/15 (ΔAGB14/15!15/16). (B) Decreases in AGB after the drought. (C) Increases in AGB after reached the lowest AGB point. (D) The
start year of AGB recovery, which is also the year with the lowest AGB value. Green areas correspond to areas where AGB has not reduced over the
period of 2015 and 2017. Yellow areas correspond to areas where AGB in 2015/16 was the lowest and regrows immediately after the drought. Purple areas
correspond to areas where AGB has not started to recover by 2019. (E) The percentage of AGB recovery—that is, the increase in AGB after the lowest
point divided by the sum of decrease in AGB during and/or after the drought. The gray areas are the areas where the ACWD is greater than �1
(i.e., non-drought-affected region).

PNAS 2022 Vol. 119 No. 26 e2101388119 https://doi.org/10.1073/pnas.2101388119 3 of 9

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 S
O

U
T

H
W

E
ST

 U
N

IV
E

R
SI

T
Y

 o
n 

M
ar

ch
 6

, 2
02

3 
fr

om
 I

P 
ad

dr
es

s 
22

2.
17

8.
20

2.
12

1.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2101388119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2101388119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2101388119/-/DCSupplemental


over intact forests in the epicenter of the 2005 drought in the
Western Amazon (28, 29). The 2015/16 drought in regions
with a lagged decrease of AGB has distinct features of high
intensity and long duration, so that available soil water after the
drought may have remained limiting and suppressed vegetation
growth, through hydraulic failure or loss of nonstructural car-
bohydrates (30). On the other hand, after having reached the
lowest AGB point, the trend of AGB reversed, and we find that
more than 80% of the regions where AGB losses occurred had
a reversal of AGB before 2019 (Fig. 2C). Divergent post-
drought recovery trajectories are also evident. Some forests
regrew short after the drought of 2015/16, whereas others
declined in a few subsequent years. As shown in Fig. 2D and SI
Appendix, Fig. S6, quick-recovering forests correspond roughly
to those previously exposed to moderate or light drought, in
eastern Amazonia, most parts of Africa, and Southeast Asia.
Conversely, late-recovering forests are in south-central Amazo-
nia, where the drought was more severe. The regions where
AGB started to recover earlier also show a higher recovery level
(Fig. 2E). By 2019, over about 40% of intact forests where
AGB decreased had fully recovered to their predrought AGB
level. The regions where AGB did not show any recovery or
did not fully recover in 2019 include regions in the epicenter
of the drought—north-central Amazonian forests, as well as the
drier eastern Amazonia and western African regions near the
edge of the intact tropical forest biome. Trees near forest edges
are most likely more vulnerable to fires, canopy drying, and
degradation (31), which could favor tree mortality and suppress
AGB recovery.
We use a simple box model driven by our estimates of AGB

changes, MODIS NPP product (i.e., MOD17A3HGF),
MODIS leaf area index (LAI) product (i.e., MOD15A2), and
NPP allocation fractions from Yang et al. (32), with specific
leaf area from Butler et al. (33), to estimate the drought-
induced extra mortality up to 2019 (see details in SI Appendix,
Text S2 and Fig. 3). The drought-related tree mortality could
occur years or even decades after drought event (10). We also
noted that forest mortality does not cause an instantaneous
emission of CO2 to the atmosphere, but, rather, a lagged emis-
sion from decaying coarse woody debris (23). To assess the per-
sistent impacts of drought-induced forest mortality on CO2

emission, we use a first-order kinetics model to simulate the
decomposition of coarse woody debris (see details in SI

Appendix, Text S2 and Fig. S7). Our results show that the
impacts of drought-induced mortality on carbon emissions over
the whole tropics can last for more than 17 y. In South Amer-
ica, we inferred that coarse woody debris decay will continue to
increase the atmospheric CO2 during a period of up to 25 y
(Fig. 3).

Factors Influencing AGB Changes During and After Drought.
The factors that determine AGB changes during drought and
its subsequent trajectory are complex and can be related to
both exposure and vulnerability of forests. We use RF models
(34) (Materials and Methods) to investigate the importance of
more than 20 factors, including drought characteristics, back-
ground climate, soil properties, forest structure, and fire occur-
rence (SI Appendix, Table S1). Altogether, these factors explain
52% of the spatial variation of the observed changes in AGB
during drought (ΔAGB14/15!15/16; Fig. 4A) and 39% of the
variation of the observed percentage of AGB recovery relative
to previous losses of AGB (log-transformed) (Fig. 4B). The RF
models present good predictive skills in reproducing the
observed spatial patterns of AGB changes during drought and
their relative recovery (SI Appendix, Fig. S8). Despite biases in
predicting locally the recovery percentage, the RF model prop-
erly identified the regions with full versus incomplete recovery,
with an accuracy of 93% (SI Appendix, Fig. S9 and confusion
matrix in Table S2). Partial dependence plots for the six most
influential factors in each RF model were calculated to examine
the nonlinear dependence of AGB changes on different predic-
tors, as shown in Fig. 4.
AGB changes during the drought. Fig. 4A shows that soil-moisture
changes during the drought year (ΔSM14/15!15/16) is the most
influential factor associated with AGB changes of ΔAGB14/15!15/16.
Unsurprisingly, larger soil-moisture deficits relative to the pre-
drought level are associated with larger losses of AGB during the
drought. A previous study suggested that these losses during
drought were mainly driven by large mortality increases, rather
than by declines in growth (2). High soil clay content is also
strongly positively associated with the reduction of AGB during
drought. We examined the covariation between soil clay content
and ΔSM14/15!15/16 (SI Appendix, Fig. S10) and the respective
effects of these two drivers on ΔAGB14/15!15/16 (SI Appendix,
Fig. S11). This analysis confirmed that the impact of soil clay con-
tent on ΔAGB14/15!15/16 is not an artifact, as ΔAGB14/15!15/16

Fig. 3. Mortality rate and carbon cost from mortality over the drought-affected regions in South America (A), Africa (B), and Southeast Asia (C). Upper shows
the averaged mortality rate during the period of 2011 through 2014 (red bar) and the extramortality rate (orange bars) in the drought year of 2015/16 and
in the following years. Lower shows carbon cost from drought-induced extramortality. Gray curves present the estimates of carbon cost using different
decomposition rate k from plot measurement. The black curve is the median value of all the estimates. The dashed vertical line indicates the number of
years when carbon cost < 0.0001 PgC.
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decreased from low to high soil clay content areas for the same
level of ΔSM14/15!15/16. Two possible mechanisms may explain
why a higher soil clay content associates with a larger AGB reduc-
tion during drought. First, the higher wilting point of clay-rich
soils limits soil moisture available for plant roots (35). Second, the
higher nutrient availability in clay soils may play a detrimental
role during drought, as forests growing in clay soils with a larger
content in nutrients—in particular, phosphorus—may be adapted
to a higher nutrient use, leading to a higher embolism risk when

severe water stress happens (36–38). The RF model also indicates
that a longer drought duration was associated with an AGB
increase during the drought year in the ever-wet north-central
Amazonia (Figs. 1B and 2A). This is likely because in this region,
background water availability is always high, and trees have deep
rooting systems, being able to access groundwater. Our RF models
also indicate that a higher VPD is associated with an increase of
AGB during drought. A possible reason is that in the ever-wet
tropics, increasing intrinsic water-use efficiency coincident with

Fig. 4. The factors influencing AGB changes during and after the drought. (A) The importance of predictor variables to fit the AGB changes during the
drought (ΔAGB14/15!15/16) and the partial dependence plot of the top six variables. In the partial dependence plot, the red line is the partial dependence
curve, showing the marginal effect of one given predictor variable on ΔAGB14/15!15/16, averaged over all observed values of the other predictor variables.
Black lines are the individual conditional expectation curves, displaying the dependence of ΔAGB14/15!15/16 on corresponding predictor variables for each
pixel instance separately. And rungs on the x axis show the deciles of the distribution of the predictors. (B) Same as A, but to fit the log-transformed percent-
age of AGB recovery after drought (exclude no recovery pixels). The predictors in bold in B are the factors also strongly associated with ΔAGB14/15!15/16 in A.
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higher radiation may sustain high photosynthesis, despite stomatal
closure at high VPD levels, at least as long as soil moisture is not
drawn down to levels approaching the wilting point (27, 39).
Background mean annual temperature had a limited and positive
effect on AGB response during drought. This result is consistent
with results from space-for-time substitution, which suggests a
limiting long-term effect of high temperatures on photosynthesis
(40), carbon stocks, and carbon turnover rate (41).
AGB recovery. As shown in Fig. 4B, the change of AGB during
the drought year was the factor most strongly associated with the
percentage of subsequent AGB recovery, according to our RF
models. Pixels with a more negative ΔAGB14/15!15/16 are gener-
ally associated with no legacy decrease after the drought, so
that the minimum of AGB was reached just after the drought
period. The partial dependence graphs in Fig. 4B show that
more losses of AGB during drought are, nevertheless, associated
with a lower recovery percentage (recovery percentage was cal-
culated as the increase in AGB after the lowest AGB point
divided by the sum of decreases in AGB during and after the
drought; Materials and Methods). Conversely, the regions with
positive ΔAGB14/15!15/16 during drought in the ever-wet cen-
tral Amazon tend to show legacy losses after the drought and
a lower recovery (Fig. 4B). Thus, the AGB change during
the drought was a strong predictor of the postdrought AGB
recovery. Soil moisture changes during the drought year
(ΔSM14/15!15/16), which was the strongest predictor of the
AGB response during drought, were also positively associated
with the percentage of AGB recovery (Fig. 4B). Locally, a lon-
ger drought was associated with a lower recovery level of AGB
(Fig. 4B). Apart from those factors found to be influential for
AGB changes during drought, the start year of the AGB recov-
ery and soil-moisture changes after drought play the second
and third most important role in explaining the postdrought
AGB recovery percentage. The sooner forests start to recover,
the higher recovery percentage they can reach within the
observed time frame.
In addition, we found that the γ, defined as the ratio of 25%

energy return height (RH25) to 100% energy return height
(RH100) from satellite Lidar data (42), was also positively asso-
ciated with the recovery of AGB after the drought. In Fig. 5,
we compared the start year of recovery and the mean annual
AGB recovery rate between high-γ ð≥ 0:3Þ and low-γ ð< 0:3Þ
forests for different levels of soil water deficits. In all cases, for-
ests with a high γ appear to have a stronger capacity to recover

than low-γ ones. To isolate the factors influencing γ, we
assessed the relation of γ with RH25 and RH100, respectively.
We found that γ increases significantly with RH25, rather than
with RH100, especially when RH100 > 20 m (SI Appendix,
Fig. S12). Here, both RH25 and RH100 extracted from Lidar
waveforms reflect the structure of forests, but the underlying
mechanism behind spatial changes in γ is still unclear. We pro-
posed three possible explanations: 1) A high γ may reflect fac-
tors with a tall understory; 2) a high γ may reflect forests with a
dense (thick) and closed canopy because Lidar photons pene-
trate less into dense canopies and do not probe the understory
structure; or 3) a high γ may relate to intact forests and a low γ
may reflect degraded forests. In the Amazon, forests and low γ
(< 0.3) are, in fact, geographically overlapping with
degradation-affected forests (SI Appendix, Fig. S13). Thus, a
low γ may be a consequence of forest degradation. To examine
this hypothesis, we assessed the probability density functions of
γ of Amazonian forests with and without degradation, accord-
ing to the degradation map of ref. 43. We found that degraded
forests (especially from fires and fragmentation) have signifi-
cantly lower γ compared to intact forests (SI Appendix, Fig.
S13). These findings reflect the importance of accounting for
forest structure, including its alteration by degradation, when
predicting the tropical forest dynamics after droughts. Future
research could compare the resilience of degraded versus intact
forests to droughts.

Conclusions

AGB changes of intact tropical forests during the 2015/16
drought, both positive and negative, depending upon regions,
are associated with drought severity (soil water deficit) and dura-
tion, as well as with soil clay content. The AGB recovery after
the drought was influenced by previous AGB losses, modulated
by climatic water deficit, soil clay fraction, and forest structure.
Our results shed light on the attribution of AGB changes during
and after droughts to different drivers, showing that predicting
the long-term impact of drought on forest communities is more
challenging because drought influences demographic processes
beyond immediate growth and mortality during the water-deficit
period. The driving role of forest structure on recovery suggests
compensatory responses of taller trees versus understory, which
need to be confirmed by ground-based inventories and drought
experiment results. Moreover, as climate change is expected
to produce more compound, frequent, severe, and long-lasting

Fig. 5. The start year of AGB recovery and the rate of AGB recovery for canopy-closed forests and low understory forests. (A) The fraction of study area (%)
with a different start year of AGB recovery of canopy-closed forests, where the understory height is close to the top canopy height (γ ≥ 0:3), and forests with
low understory (γ < 0:3). (B) The median of the percentage of AGB recovery per year (% per year) of forests for different levels of soil-moisture (SM) deficits
during the drought year.
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tropical drought events in the future (44, 45), a better under-
standing of the response and recovery of tropical forest dynamics
during and after the drought can provide valuable information
for the climate-modeling community, in order to more accurately
predict ecosystem response to drought events under future
climate scenarios.

Materials and Methods

L-VOD AGB. Satellite-based L-VOD data at 25- × 25-km resolution covering the
period from 2010 to 2019 from the SMOS (SMOS-IC, version 2) satellite is used
for the analysis. The method used here to compute AGB from L-VOD in the same
as the method used in refs. 8, 46, and 47; that is, we use four different static
AGB benchmark maps to calibrate the relationship between L-VOD and AGB for
the entire tropical region, South America, and Africa separately. The calibration
process for only Southeast Asia is not used because of the limited SMOS observa-
tions in this region. The AGB benchmark maps include three pantropical maps
(i.e., refs. 48–50) and one map covering only Africa (51). After the calibration, 10
maps of L-VOD AGB can be obtained, and the median of these 10 maps of
monthly L-VOD AGB covering the period of 2010 through 2018 is used in this
study. Fan et al. (47) have assessed the uncertainty of AGB changes derived from
L-VOD, which includes internal uncertainty from transferring the L-VOD to AGB
and external uncertainty from different reference biomass maps. In total, the
uncertainty of L-VOD–derived AGB data was on the order of 20 to 30% over
tropics. Because of the poor quality of L-VOD data over the water bodies, we
remove the 25-km pixels where the areal fraction of regularly flooded wetlands
is more than 80%, using a global wetland map from ref. 52.

Forest Cover Mask. In this study, we focus on the tropical intact evergreen for-
ests (between 25°N and 25°S), which are defined by the European Space
Agency (ESA) Climate Change Initiative (CCI) land-cover map of 2015 (300-m
resolution), Hansen forest-cover map of the year 2000, and the annual deforesta-
tion maps from 2000 to 2018 (25-m resolution) (53). First, using the 300-m res-
olution CCI land-cover map, we label the 25-km pixel dominated by evergreen
forest, in which more than 50% of the 300-m-sized pixels are evergreen forests
(classes ID 50, 160, and 170). Second, for each 25-km pixel, we calculate the
percentage of the 25-m pixels with a forest cover lower than 90% or affected by
deforestation, using the Hansen tree-cover map. The 25-km pixels with a forest
cover < 90% or deforestation higher than 20% are removed.

Drought Characteristics. The Cumulative Water Deficit (CWD) is widely used
to describe the characteristics of “meteorologically induced” drought in the
tropics (54). Based on precipitation data from NASA’s TRMM (monthly, 0.25° res-
olution, TMPA/3B43 v7) and ET data from GLEAM (monthly, 0.25° resolution,
v3.3a), we calculate monthly CWD for each pixel, as follows:

CWDm ¼ CWDm�1 � Em þ Pm if CWDm < 0
CWDm ¼ 0 if CWDm ≥ 0,

where CWDm is the CWD of the current month, which is equal to the CWD from
previous months (CWDm�1) plus the difference between the precipitation of the
current month (Pm) and ET (Em). For each grid cell, the ACWD at the ith grid for
the tth month (t = 1,2 ,… ,1 2) is calculated as:

ACWDi,t ¼ CWDi,t � CWDi,t
σðCWDi,tÞ ,

where CWDi,t and σðCWDi,tÞ are the mean value and SD of CWD at the ith grid
for the tth month during the reference period (2000 through 2019).

We use the monthly ACWD to identify the spatial extent, duration, severity,
onset, and end of the 2015/16 drought in the tropical forest. For each grid cell,
the ACWD is smoothed by using the 3-mo running average to avoid a single wet
month interrupting a long and consecutive dry period. The drought events that
last a short time (i.e., duration < 3 mo) are not included in this study. The
drought onset is defined as the first month with ACWD below the threshold of
�1 SD, and the drought end is defined as the first month when ACWD
up-crosses the threshold of �1 SD. We also derive the duration of drought as
the period between the start and the end months of the drought event and the
severity of drought as the median of ACWD during the drought period.

AGB Response and Recovery. This study and Wigneron et al. (8) used the
same quantity L-VOD AGB from the same satellite. In this study, to filer AGB
changes during the nondrought months of 2015/16, we calculated the averages
of monthly AGB during the drought period, rather than the annual mean AGB
(see details in SI Appendix, Text S3). We calculate the average of monthly L-VOD
AGB for the whole drought period; for example, the start month of the drought
event is October (Oct) 2015 and the end is March (Mar) 2016, and AGB15=16 ¼
AGBi (i = Oct, November, and December 2015 and January, February, and Mar
2016). The responses of AGB during drought are calculated as the averages of
AGB stocks during the 2015/16 drought period minus the averages of AGB stocks
for the same months, but during the years 2014 and 2015 (ΔAGB14/15!15/16):

ΔAGB14=15!15=16 ¼ AGB15=16 � AGB14=15:

We also calculate the average of AGB for the same months, but during the years
2016/17, 2017/18, and 2018/19. The decrease and increase in AGB after
drought are calculated as:

Decrease in AGB after drought : AGBmin � AGB15=16,

Increase in AGB after drought : AGBmax–AGBmin,

where AGBmin is the minimum value among AGB15/16, AGB16/17, AGB17/18, and
AGB18/19; AGBmax is the maximum value of AGB after reaching the AGBmin; and
the percentage of AGB recovery is the ratio of increase in AGB after the drought
and the sum of decrease in AGB during and after the drought, calculated as:

The percentage of AGB recovery :
AGBmax � AGBmin
AGB14=15 � AGBmin

:

Variable Importance and Partial Dependence. To fit the AGB response dur-
ing drought and recovery after drought, we use more than 20 predictor varia-
bles, including drought characteristics, background climate, soil property, forest
structure, fire occurrence, and two categorical variables (SI Appendix, Table S1).

The predictor variables of drought characteristics used are predrought ACWD
(ACWDpre), postdrought ACWD (ACWDpost), drought severity, drought duration,
soil moisture (SM), and VPD anomalies during drought and after the drought.
Soil-moisture data are from the SMOS-IC satellite. VPD is calculated by using
reanalysis climate products from the Modern-Era Retrospective Analysis for
Research and Applications,

VPD ¼ SVP� AVP,

SVP ¼ 0:6108 × e
17:27×Ta
237:3þTa ,

AVP ¼ SVP ×
RH
100

,

where SVP and AVP are saturated vapor pressure and actual vapor pressure
(kPa), Ta is air temperature at 2 m (°C), and RH is relative humidity at 2 m (%).
The predictor variables of background climate used are the average of tempera-
ture, precipitation, and radiation during the drought period and precipitation
seasonality (SD of 12-mo precipitation). The climatological monthly temperature,
precipitation, and radiation are from the WorldClim database (https://www.
worldclim.org). The predictor variables of soil property are soil clay content (%)
from SoilGrids (https://soilgrids.org). The predictor variables of forest structure
from the Geoscience Laser Altimeter System aboard the Ice, Cloud, and Land Ele-
vation Satellite (https://nsidc.org/data/icesat) are canopy density (the proportion
of an area in the ground that is covered by the crown of trees), canopy height
(RH100), understory height (RH25), and the ratio of understory and canopy
height (RH25/RH100). The predictor variable of the occurrence of fire distur-
bance is fire radiative power (FRP) observations from the Global Fire Assimilation
System (55). In addition, two categorical variables are Continent (SA, AF, and
SEA for South America, Africa, and Southeast Asia, respectively) and the start of
the recovery year (15/16, 16/17, and 17/18).

We use RF models to quantify how important each predictor variable is in
determining the fitted values of ΔAGB14/15!15/16 and the percentage of AGB
recovery. The RF model is a popular supervised learning algorithm (34, 56). It
operates by constructing a multitude of decision trees from a training dataset.
Each tree is trained on a random subset of data, and the results of all the deci-
sion trees are then combined to give a final prediction. Model performances
were assessed with the mean absolute error (MAE) and the R2 value. The
selected model has the smallest MAE and the highest R2. The spatial patterns of
the RF-predicted values are compared with the observed values (SI Appendix,
Fig. S8). Additionally, the observed recovery percentage could be classified into
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two categories, namely, with recovery percentage less than 100% and equal to/
greater than 100%. We also test if the above-mentioned RF-predicted recovery
percentage can be classified into the proper category (SI Appendix, Fig. S9 and
Table S2). Partial dependence plots based on the RF algorithm are used to visu-
alize the relationship between predictor variables and ΔAGB14/15!15/16 (or the
percentage of AGB recovery), independent of other predictor variables. This is
the marginal effect of one predictor variable on AGB changes, not the absolute
value of changes in AGB. The predictor variables with flat response functions—-
that is, no change in AGB response and recovery with the predictor variable—are
typically relatively unimportant.

We also use the multiple linear regression model for validity. For AGB
changes during the drought (ΔAGB14/15!15/16), two variables—i.e., canopy
height and RH25/RH100—are excluded in the best multiple linear regression
model, according to the Akaike Information Criterion (AIC) statistic. These two
variables also show low importance in our RF model (Fig. 4A). The best multiple
linear regression model can explain only 7.8% of variations in ΔAGB14/15!15/16

(R2 = 0.078). The Variance Inflation Factor (VIF) of all the predictors is less than
2.5, suggesting no multicollinearity. Finally, we check the residual plot of fitted
values versus the residuals, which imply a problem with the linear assumption
of the model (SI Appendix, Fig. S14A). Thus, using an RF model to predict
ΔAGB14/15!15/16 is necessary. For the AGB recovery rate, only eight variables
are kept in the best multiple linear regression model, according to the AIC statis-
tic. Among these eight predictors, six of them have significant coefficients,
according to the t-statistic test (P < 0.05), including ΔAGB14/15!15/16, Recovery
year, ΔSM14/15!15/16, Drought duration, RH25/RH100, and fire after drought.
Five out of six predictors (except for fire after drought) show high importance in
our RF model (Fig. 4B). This best multiple linear regression model can explain
19.3% of variations in the log-transformed percentage of AGB recovery after
drought (R2 = 0.193, less than the R2 of the RF model). The VIF of all the predic-
tors is less than two, and the residual plot shows no problem with the linear

assumption of model (SI Appendix, Fig. S14B). Using multiple linear regression
to predict AGB recovery rate is possible, but its prediction capacity is lower than
the RF model.

Data Availability. The authors declare that all methods needed to evaluate the
conclusions in the paper are present in Materials and Methods and/or the support-
ing information. The following previously published data were used in this work:
TRMM 3B43 rainfall (57), GLEAM ET (58), ESA CCI land cover map (59), Hansen
global forest change data (60), MODIS NPP (MOD17A3HGF) (61), MODIS LAI
(MOD15A2) (62), Global map of plant trait distribution (63), and L-VOD AGB
data (64). The computer codes and data used for this analysis are publicly avail-
able in Figshare.
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