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A B S T R A C T   

Accurate and updated bathymetric data is of great significance for the management and protection of alpine tufa 
lakes. In recent years, unmanned aerial vehicle (UAV)-borne optical remote sensing has become a cost-effective 
technique for obtaining water depth of small and clear waters like tufa lakes. UAV-based bathymetry can be 
categorized into photogrammetric approach and spectrally derived approach. Photogrammetric bathymetry is 
contactless but invalid in water areas with uniform texture, while spectral-based bathymetry requires a large 
amount of in-situ depth measurements. In this paper, we combined the strengths of the two bathymetric methods 
to retrieve the depth of clear tufa lakes using neural networks. The surface elevation and orthoimage were first 
produced from UAV-acquired overlapping images, and then water color-depth tie points were sampled in the 
orthoimage and refraction-corrected bathymetric map. Next, the shallow and deep neural networks were sepa-
rately used to train the regression models for predicting water depth. Lastly, the combined bathymetric methods 
were compared with the single ones in terms of effective spatial coverage and bathymetry accuracy. The results 
indicated that the combined methods were superior to single bathymetric methods in fully-covered bathymetry 
of clear tufa lakes. The shallow neural network-based model achieved the highest accuracy, with the coefficient 
of determination (R2) of 0.91 and the Root Mean Square Error (RMSE) of 1.12 m, whereas the deep neural 
network-based model increased the details of water depth distribution.   

1. Introduction 

Bathymetric survey is of great significance for the management and 
protection of alpine tufa lakes. As a part of surface karst sedimentary 
landforms, transparent blue-green tufa lakes have high tourism and 
scientific value (Currás et al., 2012; Li et al., 2020). However, global 
climate change, frequent geological disasters and over-exploitation of 
tourism resources make the tufa lake landscape face the risk of degra-
dation (Liu, 2017; Qiao et al., 2016). Accurate and updated water depth 
data is very critical for the monitoring and management of these lakes. 
However, depth measurement using sonar not only consumes huge re-
sources, but also is not suitable for shallow waters (Mandlburger, 2021). 

Satellite derived bathymetry (SDB) estimates the depth of shallow 
waters through remotely sensed satellite data, which has been utilized 
since the 1970s (Lyzenga, 1978). The technique was initially developed 

to retrieve water depth based on the spectral information of satellite 
imagery. In most cases, it follows the physical basis of exponential 
attenuation of optical signal in the water column. The bathymetric 
retrieval techniques are generally built upon either physical principles 
or empirical models (Niroumand-Jadidi et al., 2020). The analysis of 
radiative transfer process is the basis of physical techniques, while the 
relationships between spectrally derived features (e.g. band ratios) and 
water depth should be established for empirical techniques. Therefore, 
physical bathymetric techniques usually need to conduct accurate at-
mospheric correction, and empirical techniques require to do numerous 
in-situ measurements (Zhou et al., 2021). As a result, a large amount of 
additional workload has to be added in water depth retrieval. Recently, 
satellite two-media photogrammetry avoided these limitations and 
provided spatially extensive method for bathymetric mapping (Hodúl 
et al., 2018). But it cannot satisfy the requirements of high-resolution 
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and fine-scale bathymetry in alpine tufa lakes. 
In recent years, unmanned aerial vehicles (UAVs), especially mini- 

UAVs and drone technologies, have developed very rapidly, making 
them a popular remote platforms (Xiang et al., 2019; Chen et al., 2022). 
When taken as a whole system of components (UAV, sensor, ground 
station, etc.), their technical terms are also known as unmanned aircraft 
systems (UAS) or remotely piloted aircraft systems (RPAS) (Colomina 
and Molina, 2014; Alvarez et al., 2018). At the moment, UAV-based 
remote sensing has been increasingly used in forest surveys and man-
agement (Otero et al., 2018; Lin et al., 2022), geological surveys (Colica 
et al., 2021), hydrological research (Vélez-Nicolás et al., 2021) and 
archaeological surveys (Rouse and Krumnow, 2020), etc. Meanwhile, 
structure-from-motion and multi-view stereo (SfM-MVS) algorithms 
have become sophisticated, but they still follow the photogrammetric 
principles (Westoby et al., 2012; Fonstad et al., 2013). Hence, UAV- 
based SfM-MVS photogrammetry is frequently used for geoscience ap-
plications owing to its advantages of low cost and high resolution (Eltner 
et al., 2016; Meinen and Robinson, 2020; Granados-Bolaños et al., 
2021). Previous studies have demonstrated that the UAV-acquired aerial 
images with high overlap can produce high-resolution and high- 
accuracy digital elevation models (DEMs) (James and Robson, 2014). 
Under the conditions of good illumination and transparent water, 
overlapping UAV imagery can also derive underwater topography 
(Woodget et al., 2015; Woodget et al., 2019), which is referred to as 
bathymetry (David et al., 2021; Mandlburger, 2021). Therefore, UAV- 
based remote sensing has become an effective technique for retrieving 
depths of small and transparent tufa lakes (He et al., 2021). 

Similar to existing satellite bathymetric models, UAV-based ba-
thymetry can be categorized into spectrally derived bathymetry and 
photogrammetric bathymetry (Dietrich, 2017; Shintani and Fonstad, 
2017; Kim et al., 2019). The spectral-based bathymetry was principally 
derived from the overlapping images taken by UAV-loaded visible/ 
multispectral cameras (Kim et al., 2019; Rossi et al., 2020). The 
empirical SDB models, such as log-linear inversion model, Stumpf 
model, and optimal band ratio analysis (OBRA) (Lyzenga, 1978; Stumpf 
et al., 2003; Legleiter et al., 2009), have been applied to bathymetric 
survey, achieving a depth accuracy of about 20 cm in shallow waters 
(Rossi et al., 2020). As for UAV-based photogrammetric bathymetry, the 
refraction correction is necessary to be conducted in the general UAV- 
SfM workflow. This kind of approaches is essentially geometrical anal-
ysis that aims to eliminate the refraction effect of light at the air–water 
interface. One simplified post-processing solution is to correct the initial 
water depth derived from the resulting DEMs using a constant scale 
factor (Woodget et al., 2015). Some other approaches deal with the 
refraction effect in the process of bundle adjustment (Maas, 2015; 
Mulsow et al., 2018), or build a refraction correction model based on 
SfM-MVS photogrammetric point cloud (Dietrich, 2017). 

However, it is very difficult for the photogrammetric bathymetry to 
identify effective tie points in overlapping images of the water area with 
uniform texture (Mandlburger, 2019), so the bathymetric map 
frequently fails to cover the entire tufa lake. In contrast, spectral-based 
bathymetry usually works better in the low texture areas of a tufa lake, 
but requires a number of in-situ depth measurements (He et al., 2021). 
Therefore, the spectral-based and photogrammetric techniques com-
plement each other, and their integration may improve the effective 
coverage of bathymetry (Slocum et al., 2020). Literature review in-
dicates that the combination of photogrammetric and spectrally derived 
bathymetry provides an increase of up to 61 % in spatial coverage 
compared to either of the two approaches (Slocum et al., 2020). The 
combined approach can be applied to the bathymetry of alpine tufa 
lakes, and is expected to address the problem of missing image matching 
points in low texture areas. 

As homologous products from UAV-acquired images, the orthoimage 
and DEM share the same spatial and temporal reference. The digital 
number (DN) of spectral bands can be obtained from a SfM-MVS derived 
orthoimage (Starek and Giessel, 2017), while the initial water depth can 

be extracted from a SfM-MVS derived digital surface model (DSM) 
(Shintani and Fonstad, 2017; Meinen and Robinson, 2020). Since the 
UAV-acquired optical images are usually not preprocessed with the 
radiometric correction, DN values will be used for water depth inversion 
instead of the reflectance ones (Kim et al., 2019). The photogrammetric 
bathymetry can provide appropriate reference data for training, vali-
dation, and testing of spectral-based bathymetric models like airborne 
Lidar bathymetry (Mandlburger et al., 2021). Machine learning ap-
proaches including neural networks (e.g. back-propagation artificial 
neural networks) usually do well in establishing the relationship be-
tween spectral features and reference data (Danesh-Yazdi et al., 2021; 
Feng et al., 2021; Guo et al., 2021a; Slocum et al., 2020). Therefore, the 
combined approaches using neural networks will not only effectively 
expand the bathymetric coverage, but also make it possible for 
completely non-contact bathymetry in alpine tufa lakes. 

The structure of this paper is composed of the following sections. 
Section 2 introduces study area and UAV data acquisition, and then 
describes the methods including UAV data processing, single/combined 
bathymetric approaches and accuracy assessment. Section 3 presents the 
water depth maps derived by bathymetric models, their bathymetry 
accuracies, and improvements from neural network-based methods. The 
transferability and deficiencies of combined bathymetric models are 
discussed in Section 4. The conclusions of this study are drawn in Section 
5. 

2. Materials and methods 

2.1. Study area and data 

2.1.1. Study area 
Jiuzhai Valley is located in the south of Minshan Mountain and the 

northeast of Gongga Mountain. The terrain in the valley fluctuates, and 
the main valley has the length of greater than 30 km. In terms of geology 
and geomorphology, Jiuzhai Valley is located in the transition zone of 
Qinghai-Tibet Plateau and Sichuan Basin. Hence, the complex geologic 
history and widely distributed carbonate developed large-scale karst 
tufa deposits. In terms of climate and hydrology, Jiuzhai Valley is 
included in the humid plateau climate. There are 114 alpine lakes mostly 
distributed in groups with various sizes. The water system in Jiuzhai 
Valley has a “Y” shape, which finally flows into the Jialing River. The 
waters from Rize Valley and Zechawa Valley in the upstream converge 
into Shuzheng Valley in the downstream (Fig. 1). The study area is sit-
uated in Shuzheng Valley, where many blue-green tufa lakes are 
distributed, including Shuzheng Lakes, Lying Dragon Lake, Spark Lake 
and Double-Dragon Lake. 

Spark Lake, also known as Huohuahai Lake (Guo et al., 2021b), is a 
typical tufa lake located between Double-Dragon Lake and Lying Dragon 
Lake in Shuzheng Valley. It is roughly in a triangular shape with a side 
length of about 150 m. The flow velocity in the lake was slow, and the 
lake surface was calm. On August 8, 2017, an earthquake measuring 7.0 
on the Richter scale struck Jiuzhaigou County, northern Sichuan Prov-
ince (Lei et al., 2017). The epicenter was located in Bimang Village, 5 km 
west of Jiuzhai valley. The earthquake triggered landslides and collapses 
in various locations in Jiuzhaigou Scenic Area, including Nuorilang 
Waterfall, Spark Lake and other scenic spots. The tufa barrage at the 
downstream side of Spark Lake collapsed in the earthquake. As a result, 
the lake water was almost drained out and the lake basin was exposed. 
Earthquake caused landslips in some tufa mounds of the lake, and a 
small amount of flood remained in the downstream lake basin. Subse-
quently, the collapsed barrage of Spark Lake was rebuilt, but the 
morphology of original lake bed has not been significantly changed. 
Therefore, it is an ideal test site for studying on bathymetry of tufa lakes. 

2.1.2. UAV-acquired images 
The raw aerial images in this study were acquired by two different 

unmanned aircrafts before and after Jiuzhaigou earthquake. A fixed- 
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wing UAV (FEIMA F1000) was used before the earthquake to obtain 
images covering the whole Shuzheng Valley (December 9, 2016), while 
a quad-rotor drone (DJI Phantom4 Pro) was focused on the test site, 
Spark Lake after the earthquake (October 10, 2018). The fixed-wing 
UAV was equipped with a consumer-grade digital camera (SONY 
ILCE-5100), and the quad-rotor drone with specially designed camera 
(DJI FC6310). Both UAVs were loaded with inertial measurement unit 
(IMU) and global positioning system (GPS) to measure their 

instantaneous three-dimensional (3D) position and orientation infor-
mation (i.e. external orientation elements) during airborne surveys. The 
spatial resolutions of overlapping images collected by the fixed-wing 
UAV and the multi-rotor drone were 10 cm and 5 cm, respectively. 

2.2. Methods and validation 

The major procedures of retrieving depth of clear tufa lakes include 

Fig. 1. Location of study area. The major sub valleys of Jiuzhai Valley are marked, and the tufa lakes in study area are tagged.  

Fig. 2. (a) Orthoimage with co-registration points and bathymetric extent, and (b) surface elevation of Spark Lake.  
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explanation of UAV data processing, single and combined bathymetric 
methods, and validation of bathymetric accuracy. 

2.2.1. Surface processing and sampling 
Aerial triangulation is also called SfM in computer vision (Xiang 

et al., 2019). The commercial SfM software (i.e. Pix4D 4.4.10) was 
applied to processing UAV-acquired images through the steps of auto- 
triangulation, orthorectification and mosaicking. The purpose was to 
generate orthoimage and surface elevation of the study site (Fig. 2). SfM- 
MVS, the state-of-art algorithms for 3D surface reconstruction, are not 
only the core of aerial triangulation processing, but also the key to 
producing the final products (dense point cloud, orthoimage, DSM, etc.). 
The SfM-MVS processing starts with the automatic extraction of tie 
points in the UAV-acquired overlapping images. SfM simultaneously 
obtains camera poses and parameters via bundle adjustment, and gen-
erates sparse point cloud. On the basis of SfM processing, MVS densifies 
point cloud using multi-view stereo matching algorithms (Smith et al., 
2014). Then, the dense point cloud is rasterized to produce the ortho-
image and DSM of the study site (Iglhaut et al., 2019). 

The spatial co-registration and resampling of pre- and post- 
earthquake orthoimage and DSM were carried out in GIS software (i.e. 
ArcGIS 10.3.1). The points used for spatial co-registration were 
distributed around Spark Lake, and their positions were marked in the 
pre-earthquake orthoimage as shown in Fig. 2a. In order to keep the size 
and position of image pixels consistent, the orthoimages and DSMs 
before and after the earthquake were resampled with ground sample 
distance (GSD) of 5 cm. The lake surface points were selected along the 
water’s edge from the pre-earthquake orthoimage, and the average 
value of their elevations was taken as the final water surface elevation 
(WSE) (Woodget et al., 2019). The calculated WSE was 2,226.93 m, 
below which the bathymetric extent of the lake basin area was extracted 
from the pre-earthquake DSM (Fig. 2b). The DSM falling in the bathy-
metric extent was regarded as the initial DEM, with a minimum eleva-
tion of 2,214.09 m. Then, the initial digital bathymetric map (DBM) was 
obtained through the conversion between the initial DEM and WSE 
using Eq. (1). Likewise, the post-earthquake “dry depth” of Spark Lake 
was converted from the DSM of exposed lake bed and the WSE (Fig. 3b). 

h = WSE − E (1)  

Where h represents the water depth, WSE is the water surface elevation, 
and E represents the lake bed elevation. 

Based on the pre- and post-earthquake DBMs, the two depth values of 
each sampling point were collected, while the DN values of red, green 

and blue bands of sampling points were extracted from the pre- 
earthquake orthoimage. In the sampling process, we excluded the 
areas where the surface elevation had been changed or covered by 
ponding after the earthquake (Fig. 3a). Random sampling was con-
ducted in the selection of sample points, which achieved the relatively 
balanced distribution of sample points with various water depths. 900 
sample points were randomly divided into 600 training points with 
depth values and DN values, and 300 check points with post-earthquake 
“dry depth” values. The number distribution of sample points, training 
points and check points in the various ranges of “dry depths” was shown 
in Table 1. The training points were only used to establish spectral-based 
bathymetric models, and the check points were used to validate the 
accuracies of all bathymetric models including photogrammetric, 
spectral-based, and neural network-based models. 

2.2.2. Single bathymetric methods 
Single bathymetric methods can be divided into spectrally derived 

bathymetry and photogrammetric bathymetry. The pre-earthquake 
orthoimage and the conversed depth maps before and after the earth-
quake were taken as the data sources for single bathymetric methods. 

Spectrally derived bathymetry in our case was a method to retrieve 
the water depth by establishing the regression relationship between the 
band DN values or the combinations in the orthoimage and “dry depth” 
values after the earthquake. For single band log-linear models, the green 
band (lnGreen) was the preferred one for water depth inversion because 
it showed a stronger capability in penetrating the water body of tufa 
lakes. For band ratio models, the Stumpf model usually applied the 
combination of blue band and green band (lnBlue/lnGreen) to retrieve 
the water depth (Stumpf et al., 2003). In such a model, the longer 
wavelength (green band) provided the information of water depth 
change, while the shorter wavelength (blue band) offered the informa-
tion of bottom type (Legleiter et al., 2009). Compared with band ratio 
models, the band difference model based on blue band and green band 
(Blue-Green) was more in line with the water color features of trans-
parent tufa lakes (He et al., 2021). 

Fig. 3. (a) Distribution of sample points used for bathymetric model training and validation, and (b) the conversion relationship between depth and elevation. WSE is 
the abbreviation of water surface elevation. 

Table 1 
Depth distribution of sample points.  

Depth range 
(m) 

0–2 2–4 4–6 6–8 8–10 10–12 12–14 Sum 

Training points 18 79 112 82 87 143 79 600 
Check points 14 36 54 42 34 69 51 300 
All points 32 115 166 124 121 212 130 900  
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Photogrammetric bathymetry was based on the principle of photo-
grammetry and supplemented with refraction correction to obtain the 
actual water depth. The initial DBM directly generated by photogram-
metry had a large bias (2 ~ 3 m) and needed to be corrected. The ge-
ometry of refraction correction is described by Snell’s Law (Eq. (2)). In 
our study, refraction correction was applied to the initial DBM, and a 
constant scale factor was used to correct the initial water depth ac-
cording to the simplified Snell’s Law (Alvarez et al., 2018). The refrac-
tive index of fresh water (1.34) as the correction factor could generally 
meet the requirements of water depth estimation (Woodget et al., 2015; 
Shintani and Fonstad, 2017). In other words, the actual water depth was 
equal to the initial water depth multiplied by 1.34. The DBM correction 
could be conveniently realized using the ArcGIS Raster Calculator tool. 
However, the initial raster DBM derived from dense point cloud would 
be affected by the quality of point cloud itself. As shown in Fig. 4, the 
point cloud in low texture areas were missing due to the lack of effective 
tie points in the dense image matching of aerial auto-triangulation. As a 
result, photogrammetric bathymetry could not generate bathymetric 
map effectively covering the entire tufa lake. 

sin(r)
sin(i)

=
n2

n1
(2)  

Where i and r are the incidence angle and refraction angle for light 
transmitting from air into water. n1 and n2 are the refractive indexes of 
air and water. 

2.2.3. Combined bathymetric methods 
As the spectral and geometric bathymetric methods complement 

each other, the combination of them was expected to overcome the 
shortcomings of single bathymetric methods and establish a fully- 
covered and non-contact bathymetric method. 

Neural network is a machine learning-based operation model, which 
is composed of a large number of nodes (or neurons) in different layers. 
Generally, a neural network architecture consists of one input layer, 
one/multi hidden layer(s), and one output layer (Danesh-Yazdi et al., 
2021). Considering the fitting capability of neural networks to non- 
linear problems, the shallow and deep neural networks were selected 
to separately fit the training data. The basic way of the combination was 
to take the refraction-corrected water depth before the earthquake as the 
depth training data, and establish the relationship between the band DN 
values in the pre-earthquake orthoimage and water depths using neural 

network models. The flow chart of combining geometric and spectral 
methods is shown in Fig. 5. 

The preliminary preparation for training the neural network models 
was to exclude the invalid area in the refraction-corrected DBM, and 
extract the corrected water color-depth values from the valid area. In our 
case, the invalid area is the abnormal part of Spark lake with uniform 
texture (Fig. 4), and it would be excluded during water color-depth tie 
point sampling. The key to the establishment of bathymetric models was 
to use neural networks to train the regression models, so as to input 
spectral features and output the predicted bathymetric values (Guo 
et al., 2021a). The spectral features here referred to the DN values of red, 
green and blue bands in the pre-earthquake orthoimage. The neural 
network models were implemented using the MATLAB (version 
R2017b) Neural Network toolbox, including a shallow neural network 
and a deep neural network. The shallow neural network adopted one 
hidden layer with 5 nodes (N = 5) (Fig. 6a), the deep neural network had 
three hidden layers (Fig. 6b), and the numbers of hidden layer nodes 
were 10, 8 and 5, respectively (K = 10, L = 8, and M = 5). The reason for 
such choices was that complex topologies might lead to over-fitting, 
while simplistic ones could not accurately predict water depth (Slo-
cum et al., 2020). Furthermore, the shallow neural network was trained 
with Levenberg-Marquardt back propagation algorithm. The Sigmoid 
function was used as the activation function of hidden layer neurons 
(Eqs. (3) and (5)), while the activation function of output layer neurons 
were linear (Eqs. (4) and (6)) (Danesh-Yazdi et al., 2021). The deep 
neural network adopted the same activation function of hidden layers, 
but did more repeated calculations of hidden layers’ neurons. 

g(x) =
1

1 + e− x (3)  

f (x) = x (4)  

Hq = g(
∑3

p=1
wpqxp + aq) (5)  

Depth = f (
∑N

q=1
Hqwq + b) (6)  

Where N is the number of nodes in the hidden layer, wpq is the weight 
from the input layer to the hidden layer, xp represents the DN values of 

Fig. 4. Dense point cloud of Spark Lake. Normal point clouds are in the orange boxes, while abnormal point cloud is in the red box. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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red, green and blue bands, aq is a constant value belonging to the hidden 
layer’s neurons, Hq is the output value of neuron q in the hidden layer, 
wq is the weight from the hidden layer to the output layer, b is a constant 
value relating to the output layer’s neuron, and Depth represents the 
predicted water depth. 

In addition, the sample data for two neural networks were randomly 
divided according to the proportion of 7:2:1, namely 70 % was used for 
training, 20 % for validation, and 10 % for testing. The correlation co-
efficients (r) in training set, validation set and test set of shallow neural 
network with single hidden layer and deep neural network with multiple 
hidden layers were listed in Table 2. The two neural network models 
were retained after numerous times of training to predict the water 
depths of the entire bathymetric extent. 

2.2.4. Metrics for accuracy assessment 
We would use the post-earthquake “dry depths” of the check points 

as the reference values, and conduct a point-to-point validation to 
evaluate the performance of various bathymetric models. The statistical 
validation metrics for accuracy assessment included R2 (coefficients of 
determination), RMSE (root mean square error), MAE (mean absolute 
error) (Eq. (7)) and MRE (mean relative error) (Eq. (8)). The RMSE is 
non-linear and has a higher weight for larger errors. The MAE is a linear 
index, and all errors in the samples have the same weight. The MRE is 
known as percentage error, which is more sensitive to the errors of low 
value interval. 

MAE =
1
n
∑n

i=1
|hi − ĥi| (7)  

MRE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒
hi − ĥi

hi

⃒
⃒
⃒
⃒× 100% (8)  

Where ĥi is the resulting water depth at the location of a check point 
from various bathymetric models, hi is the reference water depth, and n 
is the number of check points. 

Fig. 5. Flow chart of combining geometric and spectral methods. h is the actual water depth, h0 is the initial water depth, and DBM is the abbreviation of digital 
bathymetric map. 

Fig. 6. The architectures of neural network-based bathymetric models. (a) Neural network model with a single hidden layer, and (b) neural network model with 
multiple hidden layers. DNR, DNG and DNB represent the DN values of red, green and blue bands, respectively. Depth (h) is the water depth value. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Correlation coefficients (r) of neural network-based bathymetric models.  

Neural network model Training Validation Test All 

Shallow neural network  0.9685  0.9523  0.9826  0.9668 
Deep neural network  0.9711  0.9797  0.9862  0.9741  
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3. Results 

3.1. DBMs derived by bathymetric models 

The six DBMs derived by single and combined bathymetric models 
were shown in Fig. 7. As a whole, the water depth distributions showed 
the similar pattern, which was shallow in the west and deep in the east of 
Spark Lake. In the shallow area, the water depths of all models had little 
difference except for lnGreen. But in the deep area, the maximum water 
depths of models lnBlue/lnGreen, refraction correction and deep neural 
network exceeded 16 m, while those of models lnGreen, Blue-Green and 
shallow neural network were less than 16 m. 

The DBMs obtained by single bathymetric methods had local 
anomalies in some areas. For example, there were obvious abnormal 
depressions scattered near submerged tufa mounds in the dashed rect-
angles in Fig. 7a, which was retrieved by single band model lnGreen. As 
seen in Fig. 7b, the band ratio model lnBlue/lnGreen alleviated the 
abnormal depressions to a certain extent. The band difference model 
Blue-Green further improved such situation and nearly eliminated the 
anomalies in those areas (Fig. 7c). In contrast, there were no abnormal 
depressions near the tufa mounds in the DBM derived by refraction 
correction model (Fig. 7d). But one abnormal bulge appeared in the 
dashed circle, where the lake bed had a uniform texture. As for the 
combined bathymetric methods based on neural network models, there 
were basically no such anomalies as depressions and bulges in the 
resulting bathymetric maps (Fig. 7e,f). Compared with single bathy-
metric methods, the combined ones were effective in the bathymetry of 
the entire water area of Spark Lake. 

3.2. Accuracy assessment of bathymetric models 

In order to validate the bathymetric data derived from the six 
methods, a total of 300 check points in the exposed basin of Spark Lake 
were collected (Fig. 3). The relationships between the elevation values 
from the six DBMs and those of the check points were presented as 
scatter plots in Fig. 8. 

As indicated in Fig. 8a, the performance of single band model lnGreen 
was the worst among all models, with the R2 of 0.48 and the RMSE of 
2.59 m. The band ratio model lnBlue/lnGreen was slightly better, with 
the R2 of 0.74 and the RMSE of 1.82 m, but there was a large deviation in 
the shallow water (Fig. 8b). Compared with the single band model and 
the band ratio model, the accuracy of band difference model Blue-Green 
had been significantly improved, with the R2 of 0.86 and the RMSE of 
1.37 m. Moreover, the band difference model nearly performed well in 
the whole water depth range (Fig. 8c). As the R2 was 0.88 and the RMSE 
was 1.32 m (Fig. 8d), refraction correction model achieved the accuracy 
close to that of the band difference model. The combined bathymetric 
model based on shallow neural network achieved the highest accuracy, 
with the R2 of 0.91 and the RMSE of 1.12 m (Fig. 8e). The RMSE was 
close to 8 % of the maximum reference depth of Spark Lake. However, 
the accuracy of the combined model based on deep neural network was 
not further improved (Fig. 8f). Its R2 was 0.90 and RMSE was 1.18 m. As 
indicated in Fig. 8, the derived depths from shallow neural network 
model and the reference ones from check points had the best consistency 
among all models, especially in shallow water. 

According to statistics in Table 3, the bathymetric model on shallow 
neural network had the lowest MAE and MRE of 0.89 m and 17.13 %, 
respectively. Meanwhile, the deep neural network model gained the 
second place, with the MAE of 0.93 m and the MRE of 19.84 %. Although 
the band difference model Blue-Green and the refraction correction 

Fig. 7. DBMs of bathymetric models. Water depth inversion models including (a) lnGreen, (b) lnBlue/lnGreen, and (c) Blue-Green; (d) refraction correction model; 
combined bathymetric models including (e) shallow neural network model, and (f) deep neural network model. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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model had very close MAEs of 1.07 m and 0.98 m, the MRE of the former 
was much larger than that of the latter. 

Among spectral-based bathymetric models, the band difference 
model Blue-Green performed best, because it better reflected the rule of 
water color changing with water depth of a tufa lake. After refraction 
correction, the photogrammetric bathymetric model achieved similar 
overall accuracy to that of the band difference model, and performed 
better in shallow water due to the involvement of the red band. With 
strong capability for fitting non-linear problems, neural network-based 
models accomplished the regression analysis between water color and 
water depth of the tufa lake with unique spectral features. Moreover, the 
neural network-based models took advantage of red, green and blue 
bands simultaneously. Different from the blue and green bands 
commonly used in the band ratio/difference models, the red band was 
most sensitive to the depth change in shallow water areas. In addition, 
the shallow neural network model could satisfy the accuracy require-
ment of bathymetry with a small number of training samples, but the 
deep neural network model could not further improve the accuracy 
without more sample data. 

3.3. Improvements from neural network-based methods 

The improvements from combined geometric and spectral methods 
were reflected in the spatial coverage and accuracy of bathymetry. 
Compared with the depth inversion models and the refraction correction 

model, the neural network-based combined methods had no obvious 
invalid bathymetric area and effectively covered the entire water area 
(Fig. 7). A large number of color-depth training samples for establishing 
spectral bathymetric models were obtained by refraction-corrected 
photogrammetric bathymetry, and the local anomalies at the water 
surface (depressions or bulges) caused by photogrammetric bathymetry 
were nearly eliminated by spectral-based bathymetric method. As a 
result, the combined bathymetric methods on neural network models 
achieved the best bathymetric accuracy without in-situ depth mea-
surements, especially in shallow water depth (Fig. 8). 

In addition, the results of combined bathymetry varied according to 
the adopted neural network architectures. The shallow neural network 
with single hidden layer satisfied the requirement of combining geo-
metric and spectral methods, and achieved high-accuracy bathymetry 
(Fig. 8e). Although the deep neural network with more hidden layers did 
not further improve the bathymetric accuracy, it added more details of 
water depth distribution in the deep water and tufa mound areas 
(Fig. 7f). 

4. Discussion 

4.1. Transferability analysis of bathymetric models 

In our study, the trained and validated bathymetric models were also 
applied to Lying Dragon Lake (Fig. 9a) and Double-Dragon Lake 
(Fig. 9m) in Shuzheng Valley (Fig. 1). The former is relatively deeper 
than Spark Lake, and the latter is shallower. According to the official 
data from Jiuzhai Admin, the maximum depths of Lying Dragon Lake 
and Double-Dragon Lake is 24 m and 9 m, respectively. Since the pre- 
earthquake UAV images of the region were captured simultaneously, 
these two lakes were considered to share the same spectral radiation 
conditions with Spark Lake. Hence, the transferability of bathymetric 
models could be evaluated by applying trained and validated models 
based on Spark Lake to the two adjacent tufa lakes. 

As indicated in Fig. 9b-h, the maximum water depths of Lying 
Dragon Lake derived by bathymetric models were generally low apart 

Fig. 8. Accuracy assessment of bathymetric models. Water depth inversion models including (a) lnGreen, (b) lnBlue/lnGreen, and (c) Blue-Green; (d) refraction 
correction model; combined neural network models including (e) shallow neural network, and (f) deep neural network. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
Statistics of accuracy assessment metrics for bathymetric models.  

Model R2 RMSE (m) MAE (m) MRE (%) 

lnGreen  0.48  2.59  1.97  60.13 
lnBlue/lnGreen  0.74  1.82  1.44  41.47 
Blue-Green  0.86  1.37  1.07  32.52 
Refraction correction  0.88  1.32  0.98  20.38 
Shallow neural network  0.91  1.12  0.89  17.13 
Deep neural network  0.90  1.18  0.93  19.84  
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from that of refraction-correction model. It was possibly caused by the 
saturation of optical signal in deep water or the refraction effect of light. 
The depth depressions induced by sparse shadows (dashed rectangles in 
Fig. 9b-d) and abnormal bulges caused by uniform textures (dashed 
circles in Fig. 9e, f) were almost removed in the bathymetric maps 
(Fig. 9g, h) derived by the neural network-based combined methods, 
especially deep neural network-based one. It indicated that the neural 
network-based models were transferable to eliminate depth anomalies. 
As for Double-Dragon Lake, the depth depressions induced by large dark 
shadows (dashed rectangles in Fig. 9j-l) were remarkable, and abnormal 
bulges caused by uniform textures (dashed circles in Fig. 9m, n) were 
still existing. In contrast, the deep neural network-based model was 
basically able to derive its maximum water depth, even with the inter-
ference of the large dark shadow (Fig. 9p). However, a small amount of 

anomalies were present at the edges of the shadow. The major reason for 
this phenomenon might be the lack of training samples at the transition 
zone between shadow and non-shadow areas. The shallow neural 
network-based model also did worse in the dark shadow areas compared 
with the deep one. In general, the neural network-based combined 
models performed well in relatively shallow waters without large dark 
shadows. 

4.2. Deficiencies and potential remedies 

In this study, the geometric and spectral methods were combined to 
realize non-contact, high-accuracy and fully-covered bathymetry of 
clear tufa lakes using neural networks. However, some deficiencies were 
reflected in the following aspects. First of all, when collecting the 

Fig. 9. Transfer applications of bathymetric models. (a) Orthoimage of Lying Dragon Lake; (b)-(h) DBMs derived by lnGreen, lnBlue/lnGreen, Blue-Green, photo-
grammetry, refraction correction, shallow neural network, and deep neural network. (i) Orthoimage of Double-Dragon Lake; (j)-(p) DBMs derived by lnGreen, lnBlue/ 
lnGreen, Blue-Green, photogrammetry, refraction correction, shallow neural network, and deep neural network. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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samples from the depth map derived by refraction-corrected photo-
grammetric bathymetry, the invalid areas with uniform texture were 
visually identified and manually excluded. The available spectral 
channels of UAV-acquired visible images were limited for bathymetric 
modeling compared with hyperspectral imagery (Legleiter and Fosness, 
2019; Rossi et al., 2020). There was a lack of quantitative study on the 
correspondence relationship between the topology of neural network 
and the number of training samples. 

Some measures could be taken to remedy these deficiencies in future 
applications. For example, the gray level co-occurrence matrix (GLCM) 
approach (Baraldi and Parmiggiani, 1995) could be used to automati-
cally determine the low texture region in the bathymetric map. With the 
gradual miniaturization and cost reduction, UAV-borne hyperspectral 
sensors were expected to be used for bathymetry of tufa lakes. Various 
topologies of neural networks could be used for combined bathymetry to 
figure out the optimum correspondence with the number of training 
samples. In addition, it was beneficial to enhance the effective depth and 
accuracy of bathymetry if UAV images were captured under conditions 
of good illumination and small solar altitude angle. 

5. Conclusions 

In this study, we combined the photogrammetric and spectral-based 
bathymetric methods to derive DBMs of tufa lakes using UAV images 
and neural networks. The important conclusions we concluded are as 
follows:  

• The surface elevation and orthoimage produced from UAV-based 
SfM-MVS photogrammetry could be used as the data sources to 
derive the DBMs of clear tufa lakes by refraction-corrected photo-
grammetric bathymetry and spectrally derived bathymetry. 

• The refraction-corrected bathymetry tended to cause depth anoma-
lies in the water areas where the lake bed had a uniform texture, 
while spectral-based bathymetry usually induced abnormal de-
pressions around the tufa mounds with sparse shadows and in the 
water areas with big shadows.  

• The combined bathymetric methods based on neural network models 
eliminated those depth anomalies occurring in single bathymetric 
methods and realized fully-covered bathymetry of the tufa lake.  

• The neural network model with a single hidden layer achieved the 
highest accuracy of bathymetry, with the R2 of 0.91 and the RMSE of 
1.12 m (close to 8 % of the maximum depth). The neural network 
model with multiple hidden layers increased the details of water 
depth distribution. 

Though the combined methods were effective for non-contact, high- 
accuracy and fully-covered bathymetry of clear tufa lakes, some de-
ficiencies existed including manual exclusion of invalid areas, insuffi-
cient spectral channels, undetermined relationship between neural 
network topology and sample number, and so forth. Therefore, the 
proposed combined bathymetric methods still have room for improve-
ments. In the future, the studies should involve automatic identification 
of uniform texture areas based on GLCM, establishment of bathymetric 
model using hyperspectral images, and determination of the optimum 
neural network topology according to the number of sample points. 
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