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A B S T R A C T   

Exploring the effect of urban spatial development pattern (UPD) on carbon dioxide emissions (CDEs) (EUC) is 
important for understanding low-carbon sustainable development. Numerous studies on EUC have mainly 
focused on individual cities or regions within the mixed conclusions due to the lack of reliable UPD indices and 
reasonable methods. Thus, taking China's 257 prefecture-level cities as experimental objects, a novel system 
approach was developed from the perspective of socioeconomic density distribution (SED) index to measure UPD on 
the basis of the Suomi National Polar-orbiting Partnership (NPP) visible infrared imaging radiometer suite (VIIRS) 
nighttime light data. EUC was then analyzed on the basis of the dynamic panel data model from multiple per-
spectives. Results show that the SED index can effectively measure UPD with rich spatial information from 
multiple dimensions. The coefficients of SED and (SED)2 are 0.129 and − 1.240, respectively, indicating that EUC 
shows a clear inverted U-shaped curve in China, i.e., an increase in UPD compactness increases CDEs at the 
beginning, and when a certain height is reached, an increase in UPD compactness decreases CDEs. Heterogeneity 
analysis indicates a U-shaped curve of EUC is found in megalopolis, and inverse U-shaped curve are observed in 
medium and small cities. Bus passenger volume, energy consumption, infrastructure, and housing demand are 
proven as the transmission factors of EUC. It is suggested that utilizing the positive externality effect of 
agglomeration and accelerating the inflection point of the inverse U-shaped curve may be necessary because the 
improvement of urban socioeconomic agglomeration will improve the UPD compactness and reduce CDEs.   

1. Introduction 

The rapid urbanization progress in China has led to a sustained 
growth in carbon dioxide emissions (CDEs) related to energy consumption 
since the reform and opening up (Sun, Han, & Li, 2020). Faced with the 
continuous growth of CDEs, the Chinese government pledged at the 21st 
United Nations Climate Change Conference in 2015 to lower CDEs in-
tensity by 60%—65% by 2030 compared to 2005 levels (Wang & Huang, 
2019). At the General Debate of the 75th Session of the United Nations 
General Assembly in 2020, the Chinese government further stated 
explicitly that CDEs will peak by 2030 and strive to achieve carbon 

neutrality by 2060. Therefore, how to achieve the CDEs reduction target 
has become the current focus of Chinese society. 

Many scholars and policy makers have realized energy conservation 
and emission reduction through advocating public transportation, 
optimizing industrial structure, promoting technological progress, and 
developing low-carbon economy (Shi, Shen, Wu, et al., 2021; Wang, 
Wang, Fang, et al., 2019a), and the urban spatial development pattern 
(UPD) has also been considered to affect the generation and diffusion of 
CDEs to a great extent (Sun et al., 2020). UPD involves the spatial 
evolution and replacement process of the “dispersion-compactness” of 
various socioeconomic elements, including economic activities, 

* Corresponding author at: Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest 
University, Chongqing 400715, China. 

E-mail addresses: msnlsr@email.swu.edu.cn (S. Liu), sjwgis@swu.edu.cn (J. Shen), jnhbjliuguifen@jn.shandong.cn (G. Liu), wyz19981013@email.swu.edu.cn 
(Y. Wu), skffyy@swu.edu (K. Shi).   

1 Co-first author of this work. 

Contents lists available at ScienceDirect 

Computers, Environment and Urban Systems 

journal homepage: www.elsevier.com/locate/ceus 

https://doi.org/10.1016/j.compenvurbsys.2022.101847 
Received 17 December 2021; Received in revised form 5 June 2022; Accepted 8 June 2022   

mailto:msnlsr@email.swu.edu.cn
mailto:sjwgis@swu.edu.cn
mailto:jnhbjliuguifen@jn.shandong.cn
mailto:wyz19981013@email.swu.edu.cn
mailto:skffyy@swu.edu
www.sciencedirect.com/science/journal/01989715
https://www.elsevier.com/locate/ceus
https://doi.org/10.1016/j.compenvurbsys.2022.101847
https://doi.org/10.1016/j.compenvurbsys.2022.101847
https://doi.org/10.1016/j.compenvurbsys.2022.101847
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compenvurbsys.2022.101847&domain=pdf


Computers, Environment and Urban Systems 96 (2022) 101847

2

population, urban land, and other public facilities (Liang, Liu, & Li, 
2021). Theoretically, the more compact the UPD, the higher the socio-
economic density distribution (SED). On the contrary, the more dispersed 
the UPD, the lower the SEDs (Fig. 1). The lock-in effect of UPD is sig-
nificant in changing urban energy consumption and CDEs level (Kahn, 
2009). For example, a compact UPD can shorten people's commuting 
distance and time, making them more inclined to use public trans-
portation and then reducing CDEs (Liang et al., 2021). By contrast, a 
compact UPD can cause traffic congestion, which is unconducive to 
lower CDEs (Wang & Huang, 2019). A dispersed UPD can increase 
consumption, waste of energies, and CDEs (Sun et al., 2020), which is 
conducive to reducing urban road density and possibly reducing CDEs 
by reducing people's desire to travel. Thus, the effect of UPD on CDEs 
(EUC) is theoretically decided by the relative magnitude of the above 
effects. 

Effective quantification of UPD is an important prerequisite for 
exploring EUC. Many indicators, including landscape pattern index (Shi, 
Wang, Yang, et al., 2019), land use intensity (Mubarek, Koomen, 
Estreguil, et al., 2011), population density (Liang et al., 2021) and 
economic density (Henderson, Nigmatulina, & S. K., 2019), are used to 
represent UPD. No vertical socioeconomic information is found because 
landscape pattern index and land use intensity only reflect the changes 
in urban physical structure, thereby limiting their wide applications. 
Population density and economic density can accurately reflect the 
regional urban structure because they can represent regional economic 
development and spatial agglomeration (Henderson et al., 2019; Liang 
et al., 2021). Specifically, population density and economic density can 
represent the expansion and contraction of the ranges of population and 
economy development in the horizontal direction and the intensity of 
population and economy activities in the vertical direction (Fig. 2). 
Although the two indicators have been applied extensively in studies of 
environmental pollution impacts of urban development, the existing 
studies are limited by the following three aspects. First, population 
density or economic density can only reflect one-dimensional (1D) 
aspect of population or economy, and UPD is a multidimensional system 
in nature, which involves all aspects of socioeconomic elements. Second, 
population density or economic density cannot effectively identify 
spatial UPD owing to the shortage of spatial information (Ciccone & R. 
H., 1996; Zhao, Cao, & Ma, 2020). Statistics are widely used to calculate 
population density or economic density, but the data can only reflect the 

average density at administrative scales, failing to reflect the differences 
in the distributions of population density or economic density within a 
city (Henderson et al., 2019; Liang et al., 2021). Third, existing studies 
often focused on a certain region or a time period and lacked of large- 
scale and long time-series analysis due to the data limitations. 

With the development of remotely sensed technology, remotely sensed 
nighttime light data (NTL) provide an excellent means to measure gross 
domestic product (GDP), population, urbanization level, and other so-
cioeconomic indicators (Liu, Shi, Wu, et al., 2021; Shi, Huang, Yu, et al., 
2014; Shi, Yu, Huang, et al., 2014). Liu et al. (Liu et al., 2021) sum-
marized that the NTL can characterize socioeconomic development in 
four dimensions: demographic, economic, social, and spatial aspects. 
Thus, the NTL can provide rich SED information from multiple di-
mensions to compensate for the 1D and no spatial information de-
ficiencies on the UPD quantification. Currently, the NTL are primarily 
derived by the Defense Meteorological Satellite Program-Operational Line-
scan System (DMSP-OLS) data and the Suomi National Polar-orbiting 
Partnership-visible infrared imaging radiometer suite (NPP-VIIRS) data 
(Shi, Huang, et al., 2014; Shi, Yu, et al., 2014). Compared with DMSP- 
OLS data with a spatial resolution of 1000 m, which are updated only 
to 2013, the NPP-VIIRS data are still being updated with better radio-
metric and spatial resolutions without pixel saturation (Tang & Cui, 
2017). Many studies demonstrated that NPP-VIIRS data outperform 
DMSP-OLS data in the estimation of socio-economic indicators; thus, 
they are usually preferred in urban applications (Shi et al., 2021). 

Based on time-series NTL, the aim of this study is to investigate 
China's EUC from a SED approach. To achieve the above objective, 
taking China's 257 prefecture-level cities as experimental objects, we 
first developed a SED index to characterize UPD based on the NTL. We 
then used this index to explore EUC on the basis of the dynamic panel 
data model from multiple perspectives. This study addresses the 
following questions: (1) How can UPD be identified effectively from a 
SED approach based on the NTL? (2) What is EUC in China? 

2. Literature review 

An accurate identification of UPD is the premise for investigating 
EUC. Some studies have identified UPD on the basis of statistics. Zhao 
et al. (Zhao, Cao, & Ma, 2020) chose a location entropy as the indicator 
to measure industrial agglomerations by using statistics on 30 provincial 
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Fig. 1. SEDs within different UPDs.  
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administrative regions in China. Ciccone and Hall (Ciccone & R. H., 
1996) calculated the density of economic activity on the basis of sta-
tistics on 50 states in America. Some studies have utilized spatial data, 
such as LandScan population data, to assess UPD (Hankey & Marshall, 
2010; Henderson et al., 2019; Liang et al., 2021). Henderson et al. 
(Henderson et al., 2019) used different economic density approaches to 
measure the pull force of cities on the basis of LandScan population data. 
Liang et al. (Liang et al., 2021) used LandScan population data to 
identify UPD from the perspective of population density distribution on 
prefecture-level cities in China. Hankey and Marshall (Hankey & 
Marshall, 2010) measured UPD by using linear population density on 
142 cities in America. Other studies have used optical remote sensing 
images, such as Landsat satellite images or land cover data, to identify 
urban spatial structures. Mubarek et al. (Mubarek et al., 2011) con-
structed a composite index by using four indices for representing UPD's 
compactness on the basis of Landsat satellite images on ‘large urban 
zones’ in Europe. Shi et al. (Shi, Wang, et al., 2019) calculated landscape 
pattern indices to characterize UPD on the basis of land cover data in 
China. Studies on the UPD cannot effectively reflect the differences in 
SED distributions within a city owing to the shortage of spatial infor-
mation. 1D LandScan population data cannot comprehensively reflect 
multidimensional UPD involving economic activities, population, mixed 
development of land, and other aspects (Liang et al., 2021). UPDs 
related to Landsat satellite images or land cover data can only represent 
the changes in urban physical structure but not the longitudinal socio-
economic information. 

Numerous studies have confirmed that NTL are closely correlated 
with socioeconomic indicators, such as population, economy, and urban 
land (Liu et al., 2021; Shi, Huang, et al., 2014; Shi, Yu, et al., 2014), 
which can compensate for 1D and no spatial defects. From the horizontal 
dimension, NTL can effectively identify urban spatial development 
scope (Shi, Huang, et al., 2014). From the vertical dimension, NTL can 
accurately represent the spatial distribution differences in socioeco-
nomic activities within a city (Shi et al., 2021; Shi, Yu, et al., 2014). 

Currently, the environmental performance of UPD, especially the 
effect on CDEs, has received less attentions. Available studies on UPD's 
impacts mainly focused on the relationship between SED agglomera-
tions and environmental pollutions, and the conclusions can be divided 
into the following three categories roughly.  

• A one-way linear relationship is found between SED agglomerations 
and environmental pollutions. One view holds that agglomerations 
can present positive externalities by promoting enterprise coopera-
tion and improving production efficiency, so as to reduce environ-
mental pollutions. Zhao et al. (Zhao, Dong, & Dong, 2021) believed 

that producer services' agglomerations can reduce pollutions. Zhao 
et al. (Zhao, Cao, & Ma, 2020) pointed out that industrial agglom-
erations will be conducive to improving environmental quality. 
Another view is that agglomerations will increase environmental 
pollutions. Dong et al. (Dong, Wang, Zheng, et al., 2019) concluded 
that industrial agglomerations can aggravate environmental pollu-
tions in China at the national and provincial levels. Cheng et al. 
(Cheng, 2016) investigated the relationship between manufacturing 
agglomerations and environmental pollutions and indicated that 
manufacturing agglomerations can aggravate environmental 
pollutions.  

• The relationship between SED agglomerations and environmental 
pollutions presents a nonlinear trend. Guo et al. (Guo, Tong, & Mei, 
2020) concluded that the relationship between industrial agglom-
erations and green development efficiency presents a U-shaped curve 
in Northeast China. Wang and Wang (Wang & Wang, 2019) analyzed 
how industrial agglomerations affects the environmental perfor-
mance at prefecture-level cities and found a U-shaped curve between 
industrial agglomerations and environmental performance. Chen 
et al. (Chen, Sun, Lan, et al., 2020) examined the contribution of 
industrial and service industry agglomerations on environmental 
pollutions at prefecture-level cities and concluded that agglomera-
tions are significantly related to wastewater emissions, sulfur dioxide 
emissions, and soot emissions in an inverse U-shaped curve 
relationship.  

• An interactive relationship is found between SED agglomerations 
and environmental pollutions. Cheng et al. (Chen et al., 2020) found 
that manufacturing agglomerations and environmental pollutions 
have two-way effects by taking China's prefecture-level cities as the 
basic research units. Manufacturing agglomerations can aggravate 
environmental pollutions, while environmental pollutions restrained 
manufacturing agglomerations. 

Studies have also examined the relationship between urban form and 
CDEs by expanding on the relationship between SEDs and environ-
mental pollution. For example, Makido et al. (Makido, Dhakal, & 
Yamagata, 2012) concluded that there is an inverse relationship be-
tween the compactness of urban form and CDEs by examining the 
relationship between urban form and CDEs from urban areas in 50 cities 
in Japan, i.e. the higher the compactness, the lower the urban carbon 
emissions. Wang et al. (Wang, Wang, Fang, et al., 2019b) argued that 
increased irregularity in urban form reduces the efficiency of CDEs. In 
contrast, the compactness of urban areas is considered to have a sig-
nificant positive effect on CDEs efficiency. Yang et al. (Yang, Li, & Cao, 
2015) described urban form in terms of urban population density and 

Population density Economy density

Fig. 2. Horizontal and vertical distributions of population density and economic density.  

S. Liu et al.                                                                                                                                                                                                                                       



Computers, Environment and Urban Systems 96 (2022) 101847

4

average city size and concluded that urban population density and 
average city size have a significant positive effect on transport CDEs per 
capita. We summarized three deficiencies by reviewing these relation-
ships. First, controversial results remain in existing studies. Three re-
lationships, namely, a one-way linear relationship, a nonlinear 
relationship, and an interactive relationship, are observed. These mixed 
results cannot provide scientific references for the sustainable devel-
opment of urban socioeconomic environment. Second, unreliable UPD 
quantification approach and rough estimation regressions are widely 
used in previous studies. Traditional UPD method cannot effectively 
identify urban spatial development from the horizontal and vertical 
dimensions. The widely used linear regression method and the lack of 
robustness test lead to the bias of the results. Third, the heterogeneity 
and mechanism of EUC have been assessed quantitatively to a limited 
extent in existing studies, but these types of analyses are of great 
importance for understanding the urban environmental sustainability. 

3. Study area and data sources 

3.1. Study area 

Prefecture-level cities in mainland China (including four major mu-
nicipalities) were selected as the basic experimental units. Prefecture- 
level cities were taken as research samples for the following reasons. 
First, the administrative unit within prefecture-level cities, including 
municipal district, county, and county-level city, are closer geographi-
cally and have similar political, economic, cultural, and natural 
geographical environment (Chien, 2010). Prefecture-level cities are 
theoretically regraded as research units, which are closely connected 
internally and relatively independent externally (Wang & Wang, 2019). 
This condition is because the independence of each administrative re-
gion makes external economic barriers formed between cities. Second, 
provincial administrative regions cannot manage county-level admin-
istrative regions directly across prefecture-level cities. Prefecture-level 
cities, as a “bridge” connecting the two, can connect provincial pol-
icies and measures directly and plan and coordinate the development of 
county-level units (Chien, 2010). Finally, considering that the incon-
sistency of the research spatial scale, the research conclusions may not 
be widely applicable. Few empirical analyses of EUC are reported at the 
prefecture-city scale. Thus, taking prefecture-level cities as research unit 
can enrich the research results at this unit scale. The administrative 
districts were merged and unified on the basis of 2018, and 257 
prefecture-level cities were ultimately selected as study samples after 
eliminating the cities with missing values and outliers. For subsequent 
heterogeneity analysis, the sample cities were divided into four sizes 
(Fig. 3). 

3.2. Data sources 

Five types of data, namely, monthly NPP-VIIRS data, CDEs data, 
socioeconomic data, land cover/use data, and administrative bound-
aries, were collected. Descriptive information on data sources is listed in 
Table S1. All spatial data projected onto the WGS84-Albers projection, 
and resampled to a spatial resolution of 500 m. 

Monthly NPP-VIIRS data are generated from the Earth Observations 
Group at NOAA's National Centers for Environmental Information. Since 
April 2012, the version 1 VIIRS composites are obtainable every month. 
The monthly NPP-VIIRS products consist of two profiles. The first one, 
“vcmcfg”, does not include data affected by stray lights; the second one, 
“vcmslcfg”, has a wider coverage for two poles, but is of poorer quality 
because it includes stray lights (Yang, Wu, Wang, et al., 2021). The 
“vcmcfg” was made use of to ensure data quality in this study. In 
addition, auroras, fires, and other transient light sources are still con-
tained in the version 1 monthly NPP-VIIRS data product. Monthly NPP- 
VIIRS data for the summer months (from May to August) at high lati-
tudes in China were severely distorted due to stray light pollution (Zhou, 

Li, Zheng, et al., 2021). Therefore, appropriate integration and correc-
tions of monthly NPP-VIIRS data are required to enhance the quality of 
NPP-VIIRS data. 

CDEs data in this study refer to the grid data of CO2 emissions from 
fossil fuel combustion, cement production, and gas flaring. As a high 
resolution (1000 m) CO2 emission product, it estimated anthropic CO2 
emissions on the basis of the geographic location of global CDEs point 
sources and combined with multiple fuel types, such as NTL that can 
characterize gaseous fuels, aircraft, and fleet tracks that can characterize 
liquid fuels. Thus, CDEs data have been shown to be an effective rep-
resentation of CO2 emissions at different spatial scales (Oda, Maksyutov, 
& Andres, 2018). 

Socioeconomic data were collected from China City Statistical 
Yearbook (2012–2018). Specific indicators include household registered 
population at year-end built-up area, per capita GDP, GDP of the sec-
ondary industry, secondary industry as percentage to GDP, tertiary in-
dustry as percentage to GDP, green covered area of completed area, total 
annual volume of passengers transported by buses and trolley buses, 
amount of foreign capital actually utilized, electricity consumption, 
local general public budget revenue, R&D personnel, and investment 
actually completed for real estate development. 

Land cover/use data were obtained from the Chinese Academy of 
Sciences, Resources and Environment Science and Data Center. The data 
have six first-levels of land types, namely, cultivated land, forest land, 
grassland, water area, and unused land, and 25 secondary land types. 

At last, China's administrative boundaries were obtained from the 
National Catalogue Service Geographic Information. 

Fig. 3. Spatial distributions of the selected prefecture-level cities. Note: 
selected prefecture-level cities are divided into megalopolis (>5 million), large 
cities (1–5 million), medium-sized cities (0.5–1 million), and small cities 
(<500,000) on the basis of the number of registered population at the end of 
2018 in accordance (State Council, 2014). 
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4. Methods 

4.1. Quantifying UPD 

The proposed UPD quantification approach mainly includes three 
steps (Fig. 4). The first step is to correct the NPP-VIIRS data, including 
annual integrations of monthly NPP-VIIRS, extractions of stable light 
areas, and eliminations of background noise and outliers. The second 
step is to extract urban areas by using the corrected NPP-VIIRS data. The 
third step is to calculate the SED index within urban areas for repre-
senting UPD from the corrected NPP-VIIRS data. 

4.1.1. Correcting NPP-VIIRS data 
Monthly data need to be integrated annually due to the lack of long 

time series annual NPP-VIIRS data. The raw NPP-VIIRS data did not 
eliminate extremely bright pixels caused by transient lights, such as 
firelight, gas combustion, volcano, and aurora, and background noise 
from low radiation detections. Thus, the specific correction steps are as 
follows.  

• The NPP-VIIRS data for high latitudes in China from May to August 
were severely distorted due to stray light pollution. The data for the 
four months were excluded and the remaining monthly data were 
merged into annual data for the years 2012 to 2018 using the mean 
synthesis method.  

• The water areas, such as lakes and reservoirs of China, were drawn 
on the basis of Google Earth images, and the mean light value of the 
water areas was taken as the minimum threshold. The areas larger 
than the threshold were considered to be the stable light regions. On 
the basis of the principle that lights in large inland waters are 0 at 
night, the pixel values less than the threshold were assigned 0 to 

eliminate unstable light sources and background noises (Tang & Cui, 
2017).  

• China was divided into 10 zones, and the highest light radiation 
value of the airport of each zone was taken as the highest threshold of 
that zone. The pixel larger than the threshold is regarded as the 
outlier pixel. An eight neighborhood algorithm was used to eliminate 
outliers in stable light regions. For process details, readers are 
advised to consult the study by Shi et al. (Shi, Yu, et al., 2014). 

4.1.2. Extracting urban area 
Accurate and meticulous extraction of urban areas is the basis of 

measuring the SED index. Currently, studies on extracting urban areas 
using NTL can be categorized into three main approaches, namely 
threshold segmentation method, edge detection method, and dynamic 
clustering method (Zhao, Jian, & Jwa, n.d.; Xie, Weng, & Fu, 2019; 
Zhao, Zhou, Li, et al., 2020; Zhou, Smith, Elvidge, et al., 2014). Among 
them, the threshold segmentation was regarded as a popular approach 
due to its simple, effective, and stable segmentation performance. Thus, 
combined with the corrected NPP-VIIRS data, Otsu algorithm, an 
optimal adaptive threshold algorithm, was used to extract urban areas in 
this study (Emre & Rzu, 2018; Lamphar, 2020). Otsu algorithm is an 
image binarization algorithm based on the principle of least squares 
method. This algorithm can divide the image into two types: foreground 
(urban area) and background (nonurban area) by calculating the 
threshold value of the connected areas. The specific steps are described 
below: first, if the value ranges of NPP-VIIRS images are [Min–Max], 
then we will set the threshold (T) to each value in the ranges from Min to 
Max. We then determined whether the pixel value is greater than T. The 
pixel belongs to the foreground class if the pixel value is greater than T; 
otherwise, it belongs to the background class and calculates the class 
variance (V) of the two classes. Next, the V corresponding to all T was 
calculated to find the largest V, where its corresponding T was the 

Synthesize monthly NPP-VIIRS data Eliminate unstable light source 
and background noise

Eliminate outliers

O Outliers

N Neighborhood pixels(a) (b) (c)

Correcting NPP-
VIIRS data 

Calculating SED 
index 

Extracting 
urban areas 

City1 City2

City3 City4

Input images
Foreground

Background

Otsu algorithm 
City1 City2

City3 City4

Sample cities Urban areas Non-urban areas

SED
High

Low

Urban 
area

Non-urban area

Fig. 4. Flow chart of UPD quantification.  
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optimal threshold. Finally, urban areas can be extracted effectively on 
the basis of the optimal threshold (Fig. 4). 

4.1.3. Calculating SED index 
Most studies at home and abroad quantify UPD on the basis of 

average density method (e.g., the ratio of regional population or eco-
nomic output value to regional area). This method can only show the 
average population density or economic density at the city level but 
cannot identify spatial UPD differences within a city. An example is 
shown in Fig. 5. The average densities of City 1 and City 2 are 2, but their 
UPDs are different completely. Specifically, we can see that the lights of 
City 1 are concentrated on the right side of the city, which present a 
compact UPD. On the contrary, the lights of City 2 are distributed within 
the city evenly, which present a dispersed UPD. The average density 
method cannot reflect the difference in UPD. The following model was 
constructed to measure SED in this study (Henderson et al., 2019) and 
compensate for the above limitation: 

SEDj =
∑Nj

i
Sij

Sij

Sj
= SDj

[

1+
Var

(
Sj
)

SD2
j

]

= SDj

[
1+CV

(
Sj
)2

]
(1)  

where SEDj represents the SED index of city j; Sij denotes the radiance of 
the ith grid of city j; Sj represents the sum of the radiance in the urban 
area of city j. SDj is the average socioeconomic density of city j. CV is the 

coefficient of variation and SDj =

∑Nj
i

Pij

Nj
. Using model (1), the SED 

indices of City 1 and City 2 are calculated to be 2.625 and 2, respec-
tively. The SED distribution in City 1 is more concentrated than that in 
City 2, which is consonant with the expected results in Fig. 5. 

4.2. Developing benchmark regression model 

The following benchmark regression model was developed to iden-
tify EUC accurately. 

lnCDEit = α+ β lnSEDit + θ (lnSEDit)
2
+ γ lnXit + ηit (2)  

where i is the city; t is the year; CDE is measured by the total annual CDEs 
within urban area. SED is the core explanatory variable. (SED)2 reflects 
the nonlinear relationship of EUC as truly as possible. X represents the 
control variables, including population density (PD, ratio of total 

population to area of municipal districts) (Liu et al., 2021), population size 
(POP, household registered population at year-end of municipal districts) 
(Shi et al., 2021), GDP per capita (PGDP, per capita GDP of municipal 
districts) (Liang et al., 2021), GDP of secondary industry (GDP2, GDP of 
the secondary industry of municipal districts) (Liu et al., 2021), proportion 
of secondary and tertiary sectors in GDP (SEC, the sum of secondary in-
dustry as percentage to GDP and tertiary industry as percentage to GDP of 
municipal districts) (Zhao et al., 2021), and greening degree (UG, green 
covered area of completed area of municipal districts) (Yao, Kou, Shao, 
et al., 2018) (Table S2). η is the random perturbation term. All indices 
are transformed logarithmically to minimize the effect of unit di-
mensions and heteroscedasticity. 

The explained variables that lag one stage was added into the model 
to eliminate the effect of endogenous variables in the static panel data 
model as much as possible. Thus, the regression model (2) can be 
redeveloped as the following dynamic panel data, and the system 
generalized method of moment (GMM) was used for estimations. 

lnCDEit = α+ λ lnCDEi,t− 1 + β lnSEDit + θ (lnSEDit)
2
+ γ lnXit + μit + ηit

(3)  

where CDEi,t-1 is the lagging one-stage CDE. 

5. Results 

5.1. NPP-VIIRS data correction evaluation 

As described above, the radiance values of the raw monthly NPP- 
VIIRS data are unstable and scattered, resulting in data in-
compatibility. Specifically, the radiation values present a strong fluc-
tuation within different monthly NPP-VIIRS data in 2012 and 2018. 
After annual correction, the data have a good continuity, which is 
suitable for long-term time series analysis (Fig. 6). The evaluation 
revealed that the correction completely eliminates the outliers and 
background noise (Fig. 7), which can ensure the reliability of UPD 
quantification results. For example, the light radiation values of Aksu in 
Xinjiang Province and Fu in Shaanxi Province changed from 1013.07 
and 1100.04 nWcm− 2sc− 1 before correction to 136.61 and 156.33 
nWcm− 2sc− 1, respectively (Fig. 7). The corrected NPP-VIIRS data can 
provide a long time series (2012–2018) and large-scale data sources for 
the exploration of EUC in China. The data have rich socioeconomic 
spatial information and compensate the deficiencies of no spatial details 
and the one-dimensionality for traditional statistic data and optical 
remotely sensed data. 

5.2. Urban area extraction evaluation 

Verifications of visual comparison and confusion matrix were used to 
test urban area extraction accuracy in this study. Some typical cities 
(Beijing, Shanghai, Guangzhou, and Shenzhen) were selected to visually 
compare the spatial similarities and differences between the urban areas 
extracted on the basis of the Otsu algorithm and Google Earth images. 
Taking Beijing as an example, the Otsu algorithm can effectively identify 
the six urban districts and most of the new areas of urban development. 
The urban and marginal areas were effectively identified in Shanghai, 
Guangzhou, and Shenzhen (Fig. 8). Taking land use/cover data in 2010, 
2015, and 2018 as the verification data, different sizes of cities were 
selected randomly to verify the accuracy of extraction results in urban 
areas on the basis of the confusion matrix approach. The accuracy 
verification results proved that urban areas can be extracted efficiently 
and accurately on the basis of the Otsu algorithm by using the NTL 
(Tables S3–S4). 

5.3. China's UPD evaluation 

The spatiotemporal characteristics of SED in China are shown in 

City1

City2

City3

City4……

1
1
1

2
2
2

3
3
3

2 2 2
2 2 2
2 2 2

City1

City2

Sample cities

Urban areas Non-urban areas

Fig. 5. Spatial distributions of NTL within urban areas. Note: the values in the 
red boxes can intuitively identify compact or dispersed UPDs. (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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Fig. 9. The definition spacing method was adopted to classify the SED 
into four levels: high SED (>40), medium-high SED (30–40), medium 
SED (20− 30), and low SED (0− 20). This process was performed to 
distinguish spatial differences. From 2012 to 2018, the SED presents a 
stable spatial pattern. Urban areas with SED > 30 are mainly located in 
the northeast region and eastern coastal region. This condition may be 
attributed to the high level of urbanization, the developed transport 
links, the excellent infrastructure, the high population density and the 
high intensity of socioeconomic activities in the eastern coastal areas. 
Northeast region has perfect technology and infrastructure, rich re-
sources and energy, and high urbanization level, resulting in more 
concentrated socioeconomic development (Hu, Li, & Dong, 2021). Most 
of the SED in the cities of central region are at a medium level. Although 

the development of urbanization can promote the resource agglomera-
tion in central region. Although the level of socio-economic develop-
ment in the central region has been rising continuously in recent years, 
the excessive rate of urban sprawl has pulled down the overall SED. The 
low SED is concentrated south of the central region. For example, 
Yongzhou, Shaoguan, and Wuzhou, which have small urban areas and 
low levels of socioeconomic development, hence low overall SED. 
Different SED levels are observed in the southwest region. This condition 
is because highly developed cities and poor and backward areas are 
found in the southwest region. 

The SEDs in large cities, medium-sized cities, and small cities present 
“wave-like” weak growths from 2012 to 2018 (Fig. 10), which are 
attributed to the “polarization-diffusion effect”. Specifically, cities with 
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Fig. 6. Comparisons of radiance values between raw monthly data and corrected annual data. Note: SP is the total of pixel radiances. (a) and (b) are the total of 
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Fig. 7. Comparisons of the raw and corrected NPP-VIIRS data for China in 2018. Note: (a)–(b) raw NPP-VIIRS data; (c)–(d) corrected NPP-VIIRS data.  
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better development conditions take the lead in driving local socioeco-
nomic development and form a clustering trend within the region in 
pursuit of scale and agglomeration benefits. The agglomeration will 
attract more production factors to gather, which is called the “polari-
zation effect” (Ye, Zhu, Li, et al., 2018). When the degree of 

agglomeration reaches the maximum tolerance of economic capacity 
and environmental capacity, it will lead to a series of urban problems 
like transport congestion, ecological contamination, large demand for 
public facilities, energy shortage, public security disorder, and unbal-
anced development between regions. The government will take a series 

Fig. 8. Visual comparisons between urban areas extracted by the Otsu algorithm and Google Earth images.  

Fig. 9. Spatiotemporal trends of SEDs in China from 2012 to 2018.  
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of interventions, such as environmental regulation and industrial regu-
lation, to avoid these problems, and the population and industries will 
start to move to the suburbs, resulting in economic diffusion and 
weakening of SEDs (Liu, Pan, Hou, et al., 2020). However, in mega-
lopolis cities, the SED at a high level presents a fluctuating decrease 

(Fig. 10 (a)). The socioeconomic factors, such as labors and industries, 
tend to shift to the suburbs with lower cost because the environment, 
traffic pressure, and the cost of living in megalopolis are relatively high. 
The more developed rail transit system in megalopolis cities makes it 
more convenient and cheaper for people to travel, leading to a relative 
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Fig. 10. Spatiotemporal trends of SEDs in cities within different sizes.  

Table 1 
Effects of SED on CDEs: benchmark regression results.  

Variable (1) (2) (3) (4) (5) (6) 

OLS OLS FE FE GMM GMM 

L.lnCDE     0.994*** 1.070***     
(451.60) (154.58) 

lnSED 8.801*** 4.556*** 9.201*** 5.315*** 0.129*** 0.464*** 
(6.00) (4.21) (6.22) (5.00) (2.71) (8.42) 

(lnSED)2 − 1.240*** − 0.654*** − 1.296*** − 0.768*** − 0.016** − 0.061*** 
(− 5.61) (− 4.00) (− 5.82) (− 4.79) (− 2.14) (− 7.35) 

lnPD  − 0.090***  − 0.095***  − 0.738***  
(− 3.74)  (− 4.08)  (− 10.57) 

lnPOP  0.584***  0.577***  − 0.010**  
(21.28)  (21.56)  (− 2.20) 

lnPGDP  0.348***  0.419***  0.010**  
(9.44)  (11.41)  (2.41) 

lnGDP2  4.011***  3.794***  0.088**  
(12.32)  (11.92)  (2.51) 

lnSEC  8.359***  8.347***  0.118*  
(13.69)  (14.03)  (1.77) 

lnUG  − 0.246***  − 0.210**  0.024***  
(− 2.72)  (− 2.38)  (5.34) 

Constant − 0.090 − 21.370*** − 0.808 − 22.415*** − 0.159* 1.546*** 
(− 0.04) (− 8.66) (− 0.33) (− 9.27) (− 1.81) (5.05) 

Time effect No No Yes Yes   
Observations 1799 1773 1799 1773 1542 1516 
Sample city 257 257 257 257 257 257 
F value 45.91 226.6 12.11 143.3   
F test 0 0 0 0   
Sargan test     0.120 0.179 
R2 0.049 0.507 0.051 0.533   

Note: L.lnCDE is the log-lagged one period CDE; ***, **, and * represent 1%, 5%, and 10% significance levels respectively; T statistic values are in parentheses; F test 
and Sargan test are the p values. 
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decrease in the SED in megacities. 

5.4. Benchmark regression result analysis 

Benchmark regression results are listed in Table 1. All p-values for 
the Sargan test are >0.1, indicating that the GMM model is accurate and 
reasonable (Liu et al., 2021). Table 1 also lists the ordinary least squares 
(OLS) results and the fixed effects model (FE) results as references, but the 
GMM results are used as the final basis. The GMM results in column (5) 
indicate SED's estimator is 0.129, which is significance positive at the 
1% level, meaning an increment in the compactness of UPD will 
aggravate CDEs. The estimator of (SED)2 is − 1.240, which is of negative 
significance at the 1% level, indicating that the relationship of UPD and 
CDEs presents an inverse U-shaped curve, and the inflection point of the 
curve is 4.031. In other words, when the logarithm of SED is <4.031, the 
increase in UPD can increase CDEs. When the logarithm of SED exceeds 
4.031, the increase in UPD will reduce CDEs. The control variable was 
added in column (6) to reduce the interference of other factors as much 
as possible. The SED's estimator is 0.464, significance at the 1% level, 
implying the increase in UPD still aggravates CDEs. The estimator of 
(SED)2 is − 0.061, which is significance at the 1% level, indicating that 
the UPD still presents an inverse U-shaped curve relationship with CDEs, 
and the inflection point of the curve is 3.803. The increase in SED in-
creases CDEs. This condition is because at the beginning of the 
agglomeration, public service, infrastructure, science and technology 
input, and environmental governance fail to keep pace with the con-
centration rate of population scale and expansion rate of production 
scale, which bring some problems with urban transport congestion and 
ecological contamination (Cheng, 2016). At this time, the concentration 
of negative externalities plays a leading role. However, SED's continuous 
increase leads to the scale effect and spillover effect of agglomeration. 
When SED reaches the inflection point value of the inverse U-shaped 
curve, the positive externality of agglomeration plays a leading role and 
CDEs decrease (Wang & Wang, 2019). Columns (1)–(4) show the esti-
mates of OLS and FE to verify the credibility of the results. The esti-
mation results of OLS and FE show a significant inverse U-shaped curve 
relationship between UPD and CDEs, which is consonant with the GMM 
results. On the whole, EUC shows an inverse U-shaped curve. CDEs in-
crease with the increase in compactness of UPD. When the compactness 
reaches a certain degree, that is, exceeds a certain inflection point value, 
CDEs gradually reduce. 

The analysis of the effect of control variables on CDEs is conducive to 
propose more targeted suggestions because control variables affect 
CDEs. For the control variables in column (6), the estimator of lnPD and 
lnPOP are − 0.738 and − 0.010 respectively, significance at the 1% level, 
indicating that CDE decreases as increasing population density and 
population size. The scale effect and agglomeration effect generated by 
high population density inside cities are conducive to sharing urban 
public infrastructure and services, promoting the formation of agglom-
eration economy, improving urban production efficiency, and reducing 
CDEs (Wang & Huang, 2019). The estimator of lnPGDP is 0.010, sig-
nificance at the 1% level, indicating economic development can increase 
CDEs. At present, China's economic development is fast, and energy- 
intensive products have a large demand, leading to the increase in 
CDEs by stimulating energy consumption (Wang & Huang, 2019). The 
estimator of lnGDP2 is 0.088, which is significant at the 1% level, 
indicating that industrial polluting gases are one of the reasons for CDE's 
aggravation. The estimator of lnSEC is 0.118, which is significant at the 
1% level, indicating that the increase in the GDP of secondary and ter-
tiary industries aggravates CDEs. The estimator of lnUG is 0.024, which 
is significant at the 1% level, indicating that the increase in green 
coverage rate can aggravate the cause of CDEs. Although the improve-
ment of greening degree is conducive to decrease CDEs, the results are 
contrary in this study. On the one hand, it may be because the time lag 
effect of greening degree on CDEs is not fully considered when selecting 
the control variable. Greening degree in the current period is likely to 

inhibit CDEs in the next period. On the other hand, urban greening is 
possibly reflected in urban areas and often goes hand in hand with CDEs, 
thereby creating the illusion that greening degree is correlated with 
CDEs positively, which is consonant with the study conclusions of Shi 
et al. (Shi, Wang, et al., 2019). 

5.5. Robustness test analysis 

The control variable substitution method and the typical city elimi-
nation method were adopted to conduct the robustness test for testing 
the credibility of the benchmark regression results (Table 2). First, 
lnGDP2 was replaced by GDP of tertiary industry (lnGDP3) for the 
robustness test. Columns (1)–(3) show that the positive and negative 
signs and significance of the SED's estimator are consonant with 
benchmark regression results, meaning EUC still presents an inverse U- 
shaped curve. Similarly, the inflection point value of the curve is 3.820 
in the GMM regression results in column (3), which is consonant with 
benchmark regression results. Second, in view of its high autonomy in 
administrative power and high degree of economic development, the 
municipality has a more prominent status and role than other cities in 
China. Thus, (4)–(6) are listed as the robustness test excluding the four 
municipalities. The results show that the positive and negative signs and 
significance of SED's estimator are still consonant with benchmark 
regression results. The inflection point value of the curve is 3.814 in the 
(6) GMM regression results, which is consonant with the benchmark 
regression results. An inverse U-shaped curve is found on EUC through 
the above robustness test. 

6. Discussion 

6.1. SED index evaluation 

The SED index constructed for quantifying UPD was in similarity to 
available studies. From a land use/cover perspective, Wang et al. (Wang 
et al., 2019a) and Shi et al. (Shi, Li, Chen, et al., 2019) identified 
compact urban structures within some developed cities in China. Simi-
larly, many megalopolises show high SED in our study (Fig. 9). Gao et al. 
(Gao, Huang, He, et al., 2016) identified a large number of low-density 
cities in backward regions by calculating the 2000 and 2010 population 
indices, which are extremely close to our study. We found that the U- 
shaped curve of EUC is similar to that of Chen et al. (Chen et al., 2020) 
by testing the effect of UPD. They concluded that agglomerations have a 
significance inverse U-shaped curve in relation to wastewater emissions, 
sulfur dioxide emissions, and soot emissions. 

Compared with previous indicators accompanied by 1D and 
nonspatial characteristics, the SED index derived from NTL can accu-
rately represent the spatial distribution differences in socioeconomic 
activities from multidimensions. The SED index can effectively identify 
the vertical development model, compensating for the shortcomings of 
the average density method (Fig. 5). Taking Beijing as an example, a 
sample line from west to east was established to clearly show the 
gradient change in UPD (Fig. 11). A comparison between the profile and 
Google Earth image shows that SED is highest in the urban center, 
decreasing from the urban center to the periphery. Thus, the use of NPP- 
VIIRS data to develop SED index can update the dynamic development 
of UPD in real time and improve the accuracy of UPD quantification 
results with finer spatial resolution. 

6.2. Heterogeneity analysis 

As listed in Table 1, EUC presents an inverse U-shaped curve in 
accordance with the results of benchmark regression results. Consid-
ering the differences of city sizes, heterogeneity analysis was conducted 
to identify nonlinear relationships (Table S5). Furthermore, an addi-
tional complementary experiment was conducted to analyze the effect of 
population density on CDEs (Liang et al., 2021) based on the whole 
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country and different city sizes since SED is not the only indicator 
affecting CDEs, replacing the core explanatory variables and keeping the 
model and control variables unchanged, and the results are presented in 
the supplementary information (Table S6). 

For medium-sized and small cities, the estimator of SED at the 1% 
level is significantly positive, while the estimator of (SED)2 at the 1% 
level is significantly negative (Table S5). The results show that the EUC 
of medium-sized and small cities presents an inverse U-shaped curve, 
which is consonant with benchmark regression results. For megalopolis, 
the estimator of SED and the estimator of (SED)2 are − 0.299 and 0.038, 
respectively, significance at the 10% level. The results show that the 
EUC of megalopolis is U-shaped curve, which is contrary to the 

benchmark regression results. For large cities, the results are insignifi-
cant. Medium-sized and small cities have relatively few polluting en-
terprises, less demand for public infrastructure, and shorter 
transportation distances. The socioeconomic size of medium-sized and 
small cities is small. As the compactness of the UPD increases, the 
agglomeration effect gradually changes from negative externalities to 
positive externalities, playing an important role in improving urban 
environmental quality and reducing CDEs (Huang, Hong, & Ma, 2020). 
Megalopolis, such as Beijing, Wuhan, and Shanghai, are highly attrac-
tive to migrants. Benefiting from the scale effect and agglomeration 
effect of high economic agglomeration brought by high population 
density, promoting the sharing of urban public infrastructure and 

Table 2 
Robustness tests of the effects of SED on CDEs.  

Variable (1) (2) (3) (4) (5) (6) 

OLS FE GMM OLS FE GMM 

L.lnCDE   1.067***   1.069***   
(154.10)   (143.52) 

lnSED 3.799*** 4.657*** 0.466*** 4.726*** 5.469*** 0.450*** 
(3.48) (4.38) (8.46) (4.32) (5.09) (8.15) 

(lnSED)2 − 0.542*** − 0.672*** − 0.061*** − 0.683*** − 0.793*** − 0.059*** 
(− 3.28) (− 4.19) (− 7.36) (− 4.14) (− 4.89) (− 7.07) 

lnPD − 0.065*** − 0.079*** − 0.689*** − 0.099*** − 0.104*** − 0.660*** 
(− 2.73) (− 3.42) (− 9.86) (− 4.00) (− 4.31) (− 9.55) 

lnPOP 0.543*** 0.541*** − 0.014*** 0.577*** 0.576*** − 0.010** 
(19.91) (20.49) (− 3.43) (19.42) (19.87) (− 2.29) 

lnPGDP 0.457*** 0.521*** 0.014*** 0.341*** 0.412*** 0.005 
(13.29) (15.42) (3.55) (9.14) (11.06) (1.26) 

lnGDP3/lnGDP2 2.179*** 2.292*** − 0.043** 4.057*** 3.829*** 0.085** 
(10.60) (11.51) (− 2.50) (12.33) (11.88) (2.43) 

lnSEC − 2.958*** − 2.724*** 0.033 8.391*** 8.380*** 0.107 
(− 7.46) (− 7.09) (0.98) (13.64) (13.96) (1.61) 

lnUG − 0.182** − 0.153* 0.024*** − 0.242*** − 0.198** 0.025*** 
(− 2.00) (− 1.74) (5.47) (− 2.65) (− 2.21) (5.53) 

Constant − 3.039* − 5.573*** 1.872*** − 21.689*** − 22.735*** 1.209*** 
(− 1.67) (− 3.13) (6.99) (− 8.69) (− 9.30) (4.07) 

Time effect No Yes  No Yes  
Observations 1773 1773 1516 1745 1745 1492 
Sample city  257 257   253 
F value 217.4 141.9  187.3 119.0  
F test 0 0  0 0  
Sargan test   0.143   0.325 
R2 0.496 0.531  0.463 0.491   

Fig. 11. SED profile in Beijing.  
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services, knowledge spillover, and labor pool effect can improve urban 
production efficiency and reduce CDEs. However, high urban popula-
tion density leads to overcrowding, increased costs of various types of 
competition, traffic congestion, and excessive demand for infrastructure 
and operation and maintenance, thereby increasing CDEs (Wang & 
Huang, 2019). Large cities' SED is at a low level, and the overall CDEs are 
large. Thus, fully reflecting the positive externality effect of agglomer-
ation economy is difficult. 

As can be seen from Table S6, overall (column (1)), the coefficient on 
LSD is significantly positive and the coefficient on (LSD)2 is significantly 
negative, indicating that there is also an inverted U-shaped relationship 
between LSD and CDEs. Based on the results of the baseline regressions 
for cities of different sizes (columns (2)–(5)), it can be seen that the LSDs 
of medium cities also show a significant inverted U-curve relationship 
with CDEs, and conversely, the LSDs of megacities show a significant U- 
curve relationship with CDEs. The regression results for large and small 
cities were not significant. From the above analysis, we know that LSD is 
also another important factor affecting CDEs. An in-depth investigation 
into the reasons why LSD affects CDEs will be the focus of our future 
research. 

6.3. EUC transmission factor assessment 

Several studies have attempted to explore EUC. However, most of 
them have not systematically analyzed the transmission factors. Corre-
spondingly, we attempted to assess EUC transmission factor from the 
following aspects (Fig. 12). First, bus passenger volume may be one of 
the transmission factors of EUC. People's commuting distance and time 
are shortened by the compact economic activities within the urban area, 
making people inclined to use more low-carbon and environmentally 
friendly public transportation (Liang et al., 2021). However, compact 
economic activities can stimulate travel demand by increasing the 
density of regional roads, thereby increasing CDE (Wang & Huang, 
2019). Compact economic activity can also aggravate traffic congestion 
without contributing to energy saving and emission control (Wang & 
Huang, 2019). Second, energy consumption may be another trans-
mission factor of EUC. Compact economic activities are conducive to 
centralized energy supply and use, which can reduce CDEs (Wilson, 
2013). However, excessive compact economic activity will inhibit the 
improvement of energy efficiency, aggravate energy consumption, and 
increase CDEs (Li & Ma, 2021). Third, foreign direct investment was 
considered an EUC's transmission factor. The scale effect and spillover 
effect of socioeconomic agglomeration increase with the increase in 
foreign investment level, which can reduce CDEs (Zhao et al., 2021). 

However, the entry of foreign investors will lead to the ‘pollution haven’ 
and aggravate CDEs due to the low intensity of environmental regula-
tions in developing countries (Zhao, Cao, & Ma, 2020). Fourth, infra-
structure may be crucial in the transmission process of EUC. Compact 
economic activity is conducive to saving space and realizing the sharing 
of infrastructure within the region, so as to save energy consumption 
(Sperling & Ramaswami, 2013). However, the compact UPD leads to 
excessive demand for infrastructure, which brings high operation and 
maintenance costs, and is unconducive to energy saving and emission 
control (Wang & Huang, 2019). Fifth, scientific research strength was 
inferred to be another transmission factor. High SED can share factors, 
learning, and other channels within the region to improve the efficiency 
of human capital and then achieve energy saving and emission reduction 
by improving scientific research strength (Wang & Huang, 2019). 
However, CDEs will increase if scientific research strength is developed 
in the direction of improving production efficiency and expanding 
production scale (Wang & Huang, 2019). Sixth, UPD may affect housing 
demand, thereby affecting CDEs. Agglomeration can stimulate the local 
housing demand. Real estate developers meet more people’ housing 
demand by reducing single-family buildings and increasing high density 
residential area with multiple units. The demand for lighting, heating, 
and cooling of air conditioning will be reduced because of the reduction 
in per capita housing area; thus, CDEs will be reduced correspondingly 
(Qin & Wu, 2015). However, a large amount of building materials and 
electricity energy will be consumed in the process of real estate devel-
opment, which can aggravate CDEs (Wang & Huang, 2019). 

Overall, the final transmission effects of these factors depend on the 
trade-off between their positive and negative effects. Whether EUC can 
be interpreted by bus passenger volume, energy consumption, foreign 
direct investment, infrastructure, scientific research strength, and 
housing demand needs further quantitative investigation. Six factors, 
namely, bus passenger volume (measured by total annual volume of 
passengers transported by buses and trolley buses) (Liang et al., 2021), 
energy consumption (measured by annual electricity consumption) (Yao 
et al., 2018), foreign direct investment (measured by foreign capital 
actually utilized) (Liang et al., 2021), infrastructure (measured by local 
general public budget revenue) (Sperling & Ramaswami, 2013), scien-
tific research strength (measured by R&D personnel) (Yao et al., 2018), 
and housing demand (measured by investment actually completed for 
real estate development) (Liu et al., 2021), were selected in this section 
to examine the transmission mechanism (Fig. 12). The mediation model 
was used to test the transmission mechanism of EUC in this section. 
Details of the intermediate effects model and model testing steps are 
given in Yao et al. (Yao et al., 2018) 

As shown in Table S7, the estimator of SED and the estimator of 
(SED)2 are significant in column (1). In column (2), SED's estimator is 
significantly positive, and the estimator of (SED)2 is significantly nega-
tive, indicating that the relationship between UPD and BPV presents an 
inverse U-shaped curve. In column (3), a significant positive correlation 
is found between bus passenger volume and CDE, and CDE increases by 
approximately 0.022 units when bus passenger volume increases by one 
unit. Thus, the mediating effect holds. In column (3), SED's estimator is 
significantly positive, and the estimator of (SED)2 is significantly nega-
tive, indicating that a partial intermediary effect is found, that is, UPD 
can reduce CDEs by influencing bus passenger volume. The higher the 
degree of urban agglomeration, the more concentrated the trans-
portation network and services, and the more centralized the residents' 
travel, which is conducive to increasing the scale effect and reducing 
CDEs (Liang et al., 2021). In column (4), the estimator of SED is 
significantly positive, whereas the estimator of (SED)2 is significantly 
negative, indicating that the relationship between UPD and energy 
consumption presents an inverse U-shaped curve. In column (5), the 
relationship between energy consumption and CDEs is positive at the 
significance level of 1%. For every increase in energy consumption by 1 
unit, CDE increases by approximately 0.026 units, indicating that the 
mediation effect is established. The estimator of SED in column (5) is 

UPD

Bus 

passenger 

volume

Energy 

consumption

Foreign direct 

investment

Infrastructure

Scientific 

research 

strength

Housing 

demand 

CDEs

Transmission factors

Positive effect Negative effect

Fig. 12. Transmission factors of EUC.  
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significantly positive, and the estimator of (SED)2 is significantly nega-
tive, indicating the existence of a partial mediation effect. The per capita 
housing area decreases with the increase in the compactness of the city. 
Thus, the demand for lighting and air conditioning will be smaller, the 
heat dissipation of the house will be reduced, and the energy con-
sumption will be relatively reduced (Holden & Norland, 2005). The 
effect of foreign direct investment on CDEs is insignificant. Thus, the 
transmission path that UPD can affect CDEs through foreign direct in-
vestment may not be established. 

As shown in Table S8, partial mediating effects are found in infra-
structure and housing demand. EUC is still an inverse U-shaped curve 
through the transmission of mediators of infrastructure and housing 
demand. A more compact UPD is conducive to realizing intraregional 
infrastructure sharing, reducing regional energy costs, and reducing 
CDEs (Wang & Huang, 2019). housing demand increases when the 
population becomes denser, and real estate developers try to meet the 
demand of more people by reducing the number of single-family 
buildings and increasing the number of high-rise apartments with 
multiple units. With the decrease in per capita housing, the demand for 
lighting, heating, and cooling of air conditioning decreases, thereby 
reducing CDEs (Qin & Wu, 2015). The effect of scientific research 
strength on CDEs is insignificant. Thus, the transmission path that UPD 
can affect CDEs by influencing scientific research strength may be 
invalid. 

7. Conclusions 

257 prefecture-level cities in China were taken as study samples to 
analyze EUC from the perspective of SED approach in this study. First, 
the SED index was constructed to measure UPD on the basis of the 
corrected NPP-VIIRS data. Then, EUC was analyzed by establishing a 
benchmark regression model. The results show that the SED index can 
effectively measure UPD with rich spatial information from multiple 
dimensions in China. EUC presents an obvious inverse U-shaped curve in 
China. When SED is lower than the inflection point value, SED's negative 
externality is significant, but the positive externality is insufficient, and 
the increase in compactness of UPD aggravates CDEs. With the passage 
of time, the agglomeration's positive externalities start to appear. When 
SED exceeds the inflection point value, the agglomeration's positive 
externalities are greater than its negative externalities, thereby reducing 
CDEs. The robustness test shows that the compactness of UPD still pre-
sents a significance inverse U-shaped curve relationship with CDEs. 
Significant heterogeneity is found in EUC. There is an inverse U-shaped 
curve in small and medium-sized cities while a U-shaped curve is pre-
sented in megalopolis. Bus passenger volume, energy consumption, 
infrastructure, and housing demand are proven as the transmission 
factors of EUC. 

A few limitations were identified in our study that will have to be 
resolved in future studies. Some natural factors affecting CDE disper-
sion, such as wind direction, wind speed, precipitation, and tempera-
ture, were ignored in this study. In future studies, the spatial proximity 
effect of economic activities and natural factors will be fully considered 
on the basis of finer resolution and longer timing. We did not identify the 
diversity of UPD, such as single-centered, multi-centered UPD, and 
concentric UPD. More effective approaches will be developed to quan-
tify multiple types of UPD and their effects. 

Furthermore, as cities are complex systems, traditional linear science 
has limitations for a better knowledge and understanding of cities 
(Gong, Xu, Jiao, et al., 2021). The urban scalar law provides a simple 
method for studying complex urban systems (Lei, Jiao, Xu, et al., 2021a; 
Lei, Jiao, Xu, et al., 2021b). Many urban socioeconomic indicators, such 
as GDP, crime, household electricity consumption, road length, etc., are 
often included in the urban indicator system to examine whether they 
follow the urban scalar law (Ramaswami, Jiang, Tong, et al., 2018). 
However, urban environmental indicators, such as CDEs, haze pollution, 
etc., are rarely used. In the future, we may combine nighttime lighting 

data, CDEs grid data and other high resolution spatiotemporal data to 
investigate whether CDEs follow urban scalar rates at different levels (e. 
g. city-level as well as intra-city cell level). 
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