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A B S T R A C T   

High-quality and long-term surface soil moisture (SSM) and root-zone soil moisture (RZSM) data are critical for 
agricultural water management of Jiangsu province, which is a major agricultural province in China. However, 
few studies assessed the accuracy of SSM and RZSM datasets in croplands of Jiangsu province. The study 
addressed this gap by firstly using observations from ninety-one sites to assess thirteen satellite and model-based 
SSM products (Advanced Scatterometer (ASCAT), European Space Agency Climate Change Initiative (ESA CCI) 
Combined/Passive/Active, Soil Moisture and Ocean Salinity in version IC (SMOS-IC), Land Parameter Retrieval 
Model (LPRM) Advanced Microwave Scanning Radiometer 2 (AMSR2), Soil Moisture Active Passive (SMAP)- 
Multi-Temporal Dual-channel Algorithm (MTDCA)/Level 3 (L3)/Level 4 (L4)/SMAP-INRAE-BORDEAUX (IB)/ 
Multi-channel Collaborative Algorithm (MCCA), the fifth generation of the land component of the European 
Centre for Medium-Range Weather Forecasts atmospheric reanalysis (ERA5-Land), and the Noah land surface 
model driven by Global Land Data Assimilation System (GLDAS-Noah)), and four RZSM products (ERA5-Land, 
GLDAS-Noah, SMAP-L4 and ESA CCI (retrieved using ESA CCI Combined SSM coupled with an exponential 
filter)). We also inter-compared time-invariant and time-variant Triple Collocation Analysis (TCA)-based R with 
in situ-based R calculated using SSM anomalies. Various evaluation strategies were compared using different 
groups of available sites and temporal samplings. Our results showed that the model-based and combined SSM 
products (i.e., ERA5-Land, SMAP-L4, ESA CCI Combined/Passive/Active, GLDAS-Noah, ASCAT) performed better 
than the other SSM products and ERA5-Land, SMAP-L4 and ESA CCI RZSM generally performed better than the 
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GLDAS-Noah RZSM product with higher R. Similar performance rankings were observed among time-invariant 
and time-variant TCA-R and in situ-based R, in which the TCA-R values for all SSM datasets were higher than the 
in situ-based R as the representativeness errors of the in situ measurements may bias in situ-based R. The accuracy 
of the ESA CCI, GLDAS-Noah and ERA5-Land SSM products was expected to be enhanced by considering the 
water effect and high uncertainties were observed for MTDCA and SMAP-MCCA SSM over dense vegetation 
periods and regions. Also, it is important to select appropriate evaluation strategies to conduct the SSM and 
RZSM evaluations according to the situation as the available sites and temporal samplings may bias the evalu
ation results.   

1. Introduction 

Surface soil moisture (SSM) and root-zone soil moisture (RZSM) are 
key state variables in the hydrological cycle and control the exchange of 
water and energy between land and atmosphere interactions (Peng 
et al., 2021; Seneviratne et al., 2010). Temporally and spatially 
continuous soil moisture datasets are beneficial for numerous applica
tions such as climate monitoring (Hirschi et al., 2010; Miralles et al., 
2013), applied hydrology (Jackson et al., 2009), evaporation estimation 
(Martens et al., 2017), drought warning (Chatterjee et al., 2022; Watson 
et al., 2022), and water resources management (Zhao et al., 2020), 
especially as agriculture is the primary user of water. 

In situ measurements can provide accurate SSM and RZSM informa
tion but are insufficient for monitoring large spatiotemporal climate and 
environmental changes due to the limitations (very time-consuming) of 
deploying dense networks (Bi et al., 2016; Ochsner et al., 2013). Mi
crowave remote sensing is an effective global SSM monitoring approach 
owing to its immunity to bad weather and nighttime and the benefit of 
frequent revisits (Owe et al., 2008). The Advanced Microwave Scanning 
Radiometer-Earth Observing System/2 (AMSR-E/2) (Koike et al., 2004), 
Soil Moisture and Ocean Salinity (SMOS) (Kerr et al., 2010), Soil 
Moisture Active Passive (SMAP) (Entekhabi et al., 2010), and Advanced 
Scatterometer (ASCAT) (Wagner et al., 2013) are widely known satel
lites/sensors for providing spatio-temporal SSM information. In addi
tion, a combined SSM product from the European Space Agency Climate 
Change Initiative (ESA CCI) (Dorigo et al., 2017) benefits from regular 
updates to improve its quality. RZSM products mostly come currently 
from land surface model (LSM) outputs, including the enhanced global 
dataset for the land component of the fifth generation of European 
(ERA5-Land) (Muñoz-Sabater et al., 2021), the Global Land Data 
Assimilation System (GLDAS-Noah) (Rodell et al., 2004), etc., due to the 
constraint on microwave penetration depth (Reichle et al., 2007). 

Note that some uncertainties could exist in retrieving SSM in the 
croplands as vegetation development affects the radiative transfer 
mechanisms, and irrigation events could affect its spatial distribution 
(Fan et al., 2015). Previous studies have also reported that the perfor
mance of the SSM products in China could be affected by radio- 
frequency interference (RFI), which corresponds to unwanted man- 
made emissions received by the satellite sensors, especially at L-band 
(Al-Yaari et al., 2019; Wigneron et al., 2021; Zhao et al., 2015). In 
particular, their performance seems to be highly impacted by radio- 
frequency interference (RFI) in Jiangsu province, mainly for the SMOS 
L-band radiometer (http://www.grss-ieee.org/rfi_observations.html). 
Thus, evaluating remotely-sensed and model-based SSM and RZSM data 
over croplands is essential for their practical applications and further 
improvements. 

Rare investigations have been carried out over the croplands of 
Jiangsu Province. Until now, most evaluation studies have been con
ducted either over the whole country (Chen and Yuan, 2020; Jia et al., 
2015; Ling et al., 2021; Sun et al., 2017) or in sub-regions (North China 
Plain (Wang et al., 2016), Central and Eastern Agricultural Area (Yang 
et al., 2021b), Southwestern China (Peng et al., 2015), Central Tibetan 
Plateau (Chen et al., 2013; Xing et al., 2021), and Mongolian Plateau 
(Luo et al., 2020), etc.) or specific watersheds (Heihe River (Wang et al., 
2021), Luan River (Zheng et al., 2022)) of the Chinese mainland. This 

can be attributed to the scarcity of in situ sites within Jiangsu province 
that prevent sound evaluations. 

Jiangsu, covering an area of 10.26 × 104 km2, is one of China’s most 
important agricultural provinces. Croplands covered about 60% of the 
Jiangsu Province. Winter wheat is the second major cereal crop ac
counting for approximately 30% of the total grain production in China. 
Thus, the accuracy of the soil moisture datasets is key to the agricultural 
water management of Jiangsu province (Xu et al., 2018). An in situ 
network including ninety-one sites, deployed by the Jiangsu Meteoro
logical Information Center, provides an opportunity to assess the 
remotely sensed and model-based soil moisture datasets for croplands in 
Jiangsu province. This valuable dataset is totally independent of the soil 
moisture datasets, as these observations are not included in their 
calibration. 

Besides, different evaluation strategies may lead to very different 
results, which have not been comprehensively considered in previous 
studies, and thus deserve to be investigated further. Evaluating the SSM 
and RZSM products from various evaluation strategies could help 
investigate the impact of these approaches on evaluation results and 
obtain a relatively fair and comprehensive evaluation. For example, the 
evaluations can be conducted: i) using all available in situ sites and time 
samplings for each SSM and RZSM product, ii) using all available time 
samplings of common sites or, iii) using overlapped dates within com
mon sites. 

In addition, direct comparison against in situ measurements from 
sparsely distributed networks may not be sufficient for a sound assess
ment, the results of which could be hindered by the sites’ representa
tiveness errors (Xing et al., 2021). The triple collocation analysis (TCA) 
is another tool that can be implemented at a footprint/pixel scale. TCA 
was first used in oceanography and then introduced to evaluate the SSM 
products, as it does not require high-quality reference data and can be 
used to estimate the error variance of three independent SSM products 
(Chen et al., 2018a; Dong and Crow, 2017; Kim et al., 2020). Besides, 
agricultural applications of SSM information require accurate SSM ac
curacy estimates during the critical crop development period except for 
the time-invariant SSM accuracy for the whole research period (Wu 
et al., 2021a). Thus, considering both time-invariant and time-variant 
TCA-R are necessary for accurate SSM retrievals at different time 
scales, as the latter provides daily accuracy estimates with time (Su 
et al., 2014). 

This study focuses on the Jiangsu province using in situ measure
ments to (i) assess the accuracy of the thirteen SSM products and four 
RZSM products; (ii) analyze products’ performance under different 
evaluation strategies; (iii) investigate the potential impact factors on the 
performance of all soil moisture products used in the study. 

2. Datasets 

2.1. In situ measurements 

Ninety-one sites mainly distributed in croplands of Jiangsu province 
were used for the evaluation (Fig. 1 and Table S1). At each site, the 
sensors were installed in a horizontal orientation at the topsoil layer (i.e., 
0–10 cm), and at other depths from 10 to 100 cm with an interval of 10 
cm (Chen et al., 2018b). Each site can simultaneously provide 
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measurements of volumetric soil moisture content, relative soil humid
ity, soil weight moisture content, and available soil water storage at a 1- 
h time interval per day. Data was collected by the Jiangsu Meteoro
logical Information Center and only the in situ measurements from 
January 2011 to December 2018 were available due to the in situ mea
surements in Jiangsu province are not publicly available, and observa
tions after quality controls were retained only. With a flat average 
elevation of 54 m, Jiangsu province has fourteen different land surface 
types, of which four types dominate: croplands, savannas, urban areas, 
and water bodies. 

2.2. Satellite and reanalysis SSM and RZSM datasets 

Thirteen SSM datasets and three RZSM datasets were collected in this 
study, including 1) the SMOS-IC version 2 ascending (6:00 a.m.) and 
descending (6:00 p.m.) SSM product (Li et al., 2020; Wigneron et al., 
2021), 2) the AMSR2 LPRM Level 3 X-band (10.7 GHz) descending 
(1:30 a.m.) and ascending (1:30 p.m.) SSM product (Njoku et al., 2005), 
3) the H115-Metop ASCAT ascending (9:30 p.m.) and descending (9:30 
a.m.) SSM product (Wagner et al., 2013), 4) the ESA CCI combined, 
passive and active (hereafter ESA CCI, ESA CCI-P, ESA CCI-A) SSM 
product (Dorigo et al., 2017), 5) the SMAP-L3 version 8 (Chan et al., 
2016), MTDCA version 5 (Konings et al., 2017), SMAP-MCCA version 1 
(Zhao et al., 2021) and SMAP-IB version1 (Li et al., 2022) descending 
(6:00 a.m.) and the SMAP-MCCA version 1 ascending (6:00 p.m.) SSM 
products, 6) the SMAP-L4, ERA5-Land and GLDAS-Noah SSM (~0–5 cm 

for SMAP-L4, 0–7 cm for ERA5-Land and 0–10 cm for GLDAS-Noah) and 
RZSM (0–100 cm) datasets at 0:00 and 12:00 UTC (Muñoz-Sabater et al., 
2021; Reichle et al., 2017; Rodell et al., 2004). For more details refer to 
Table 1 and Supplementary Text. 

The retrievals considered “good” in these products are usually used 
only (Gruber et al., 2020). The quality flags for the above products used 

Fig. 1. Overview of the study area. (a) Locations of the in situ sites (black triangle). (b) MODIS International Geosphere-Biosphere Programme (IGBP) land cover 
maps. (c) Altitude above mean sea level in meters with a spatial resolution of 90 m shared freely by the Shuttle Radar Topography Mission (SRTM) (http://srtm.csi. cg 
iar.org/srtmdata/). 

Table 1 
Overview of the SSM and RZSM datasets used in this study.   

Datasets Version Spatial 
resolution 

Temporal 
resolution 

Product 

Satellite 
products 

AMSR2 LPRM V001 0.25◦ Daily SSM 
SMOS-IC V2 25 km Daily SSM 
SMAP-L3 V8 36 km Daily SSM 
SMAP-IB V1 36 km Daily SSM 
MTDCA V5 9 km Daily SSM 
SMAP-MCCA V1 36 km Daily SSM 
ASCAT H115 12.5 km Daily SSM 
ESA CCI 
Combined/ 
Passive/ 
Active 

V6.1 0.25◦ Daily SSM 

SMAP-L4 V6 9 km Daily 
SSM and 
RZSM 

Reanalysis 
products 

ERA5-land V2 0.1◦ Hourly SSM and 
RZSM 

GLDAS-Noah V2.1 0.25◦ 3-Hourly 
SSM and 
RZSM  

L. Fan et al.                                                                                                                                                                                                                                      

http://srtm.csi
http://cgiar.org/srtmdata
http://cgiar.org/srtmdata


Remote Sensing of Environment 282 (2022) 113283

4

in the study are as follows: 1) AMSR2 LPRM SSM pixels were retained 
when “snow mass = 0” and “soil temperature > 0 ◦C"; 2) SMOS-IC SSM 
pixels were filtered when “Scene flag > 1” and “TB-RMSE > 8 K"; 3) 
ASCAT SSM pixels were retained when “Frozen or Snow cover proba
bility < 50%” and “Flag = 1”; 4) ESA CCI SSM pixels were retained when 
“Flag = 0”; 5) SMAP-L3 and MTDCA SSM pixels were only kept when the 
retrieval quality is recommended. Namely, pixels with open “water 
fraction > 0.1”, “precipitation > 1 mm/h”, snow, frozen ground and 
strong topography were masked. 6) SMAP-IB SSM pixels were filtered 
when “Scene flag >1”; 6) SMAP-L4, ERA5-Land and GLDAS-Noah SSM 
and RZSM grids were retained when “snow mass = 0” and “soil tem
perature > 0 ◦C" (estimated from GLDAS-Noah). 

2.3. Auxiliary datasets 

Some auxiliary datasets used to explore the uncertainties of the SSM 
products are as follows (Table 2): 1) the descending SMAP-L3 L-band 
VOD product used in the dual-channel algorithm (DCA) retrieval, which 
is used to characterize the vegetation density; 2) the MODIS IGBP land 
cover map, which is used to calculate WF to characterize the open water 
bodies’ effect, respectively; 3) the ascending SMOS-IC L-band TB-RMSE 
data, which is used to represent RFI to characterize the influence of the 
unwanted man-made emissions received by the L-band satellites 
(Wigneron et al., 2021). The daily average ERA5-Land precipitation was 
also collected. 

3. Methodology 

3.1. Data pre-processing 

To quantify a fair inter-comparison, the assessment was carried out 
for all datasets for the same period (from March 2015 to December 
2018). The overpass/output time of each satellite/reanalysis product 
was matched with the observed time of in situ measurements in less than 
an hour. The product data were then obtained from the pixels/grids 
corresponding to each site following the nearest grid method (Al-Yaari 
et al., 2019). Besides, we took multiple in situ sites within a satellite/ 
reanalysis grid cell as independent sites and compared them separately, 
as each site could be partly representative of the grid cell truth values 
following Xu et al. (2021). Correlation coefficient (R) and ubRMSE were 
used as the major criteria for the assessment, as they are less affected by 
the depth difference between sites and satellite and reanalysis products 
(Yang et al., 2020). The metrics were only calculated for the sites with 
significant correlation coefficients (P-Value < 0.05) so that the number 
of available sites used in the error metrics calculation may vary from one 
product to the other. The influence of different temporal sampling and 
available sites on the performance of all products will be discussed later 
using different evaluation strategies. 

3.2. Calculation of RZSM 

A depth-weighted mean method was applied to obtain in situ RZSM 
(i.e., the 0–100 cm soil layer) (Gao et al., 2017). The calculation was as 

follows: 

θRZSM =
2θ1L1 + (θ1 + θ2)L2 + (θ2 + θ3)L3 + … + (θi− 1 + θi)Li

2(L1 + L2 + L3 + … + Li)
(1) 

Where θRZSM denotes RZSM, θi denotes soil moisture values at the ith 

layer, and Li denotes the ith layer depth, including eight specific depths 
(i.e., 0–10, 10–20, 20–30, 30–40, 40–50, 50–60, 60–80, 80–100 cm). 

The RZSM product was provided by SMAP-L4 and GLDAS-Noah 
directly. ERA5-Land RZSM could be obtained using a weighted 
average method by combining the soil moisture values at the first (θ7cm), 
second (θ28cm), and third (θ100cm)) layers (González-Zamora et al., 
2016): 

θRZSM = 0.07*θ7cm + 0.21*θ28cm + 0.72*θ100cm (2) 

The exponential filter proposed by Wagner et al. (1999) and later 
reformulated in a recursive form by Albergel et al. (2008) was exten
sively used to retrieve RZSM from satellite SSM products (Cho et al., 
2015; Fan et al., 2018). The method assumes a constant pseudo- 
diffusivity factor that propagates fluctuations in SSM in the attenuated 
form to RZSM (Rossini and Patrignani, 2021). The recursive formulation 
to retrieve RZSM from SSM can be written as: 

SWIn = SWIn− 1 +Kn(ms(tn) − SWIn− 1 ) (3) 

Where SWIn (ranges from 0 to 1) is defined as the soil water index 
representing the degree of saturation of the RZSM at time tn. SWIn can be 
translated from relative (%) to absolute volumetric unit (m3/m3) by 
multiplying soil porosity information (Wagner et al., 2013). ms(tn) is the 
satellite SSM at time tn, scaled by the maximum and minimum values 
during the entire research period. The gain K at time tn can be written as: 

Kn =
Kn− 1

Kn− 1 + e−
tn − tn− 1

T
(4)  

where tn – tn-1 is the difference in days between SSM observations. T 
represents the infiltration time in days and the only unknown of the 
function, which is often assumed to be related to soil texture and bulk 
density (Albergel et al., 2008). The optimal T parameter (Topt) was 
determined by maximizing the correlation coefficients between the 
retrieved RZSM and in situ RZSM, in which the retrieved RZSM was 
computed using different T (1–60 days) (Wang et al., 2017). The filter 
was initialized with SWI1 = ms(t1) and K1 = 1. Since the in situ soil 
porosity information is hard to obtain, the soil porosity values for each 
site derived from the static information for the ASCAT product obtained 
from the Harmonized World Soil Database (HWSD) were used (Wagner 
et al., 2013). The average soil porosity of these sites is 0.54 m3/m3 with a 
standard deviation of 0.03 m3/m3. In the study, ESA CCI SSM was 
coupled with an exponential filter to estimate ESA CCI RZSM for each 
site in Jiangsu province due to ESA CCI SSM outperformed the other 
satellite SSM products. 

3.3. Evaluation metrics 

3.3.1. In situ-based metrics 
Taylor diagram (Taylor, 2001) was used to assess the products’ ac

curacy. Normalized standard deviation (SDV, Eq. (5)) indicates the ratio 
between the evaluated products (i.e., θEST) and referenced datasets (i.e., 
θREF) standard deviations (Cho et al., 2017; Kim et al., 2018). R (Eq. (6)) 
and cRMSE (Eq. (7)) are the Pearson correlation coefficient and the 
centered Root Mean Square Error between θEST and θREF, respectively. 

SDV =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(θEST − θEST)
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(θREF − θREF)
2

√ (5)  

R =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
(θEST − θREF)

2

(θEST − θREF)
2

√

(6) 

Table 2 
Overview of the auxiliary datasets used in this study.  

Factors Database Spatial 
resolution 

Time 
period 

References 

VOD SMAP-L3 L- 
band VOD 

0.25◦ 2015–2018 (Chan et al., 
2016) 

WF 
IGBP MODIS 
land cover 500 m 2015 

(Friedl and Sulla- 
Menashe, 2019) 

RFI 
SMOS-IC TB- 
RMSE 25 km 2015–2018 

(Wigneron et al., 
2021) 

Precipitation ERA5-Land 0.1◦ 2015–2018 
(Muñoz-Sabater 
et al., 2021)  
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cRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[(θEST − θEST) − (θREF − θREF) ]
2

√

(7)  

where θEST is either the evaluated SSM or RZSM product; θREF is the in 
situ SSM or RZSM; the overbar indicates the temporal mean operator (i. 
e., θEST and θREF). 

In addition, three commonly used statistical indicators, namely 
averaged bias (Bias, Eq. (8)), Slope (Eq. (9)) and RMSE (Eq. (10)), was 
also applied to examine the accuracy of these datasets (Entekhabi et al., 
2010). Since the RMSE (Eq. (10)) could be compromised when biases 
exist between in situ measurements and satellite and model-based 
pixels/grids (Al-Yaari et al., 2016), the ubRMSE (Eq. (11)) is often 
optimal to evaluate soil moisture products (Yang et al., 2020). 

Bias = θEST − θREF (8)  

Slope =
[(θREF − θREF)(θEST − θEST) ]

(θREF − θREF)
2 (9)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(θEST − θREF)
2

√

(10)  

ubRMSE =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
RMSE2 − Bias2

√
(11) 

Considering the limited available sites with significant (P-Value <
0.05) correlation coefficients and low temporal sampling of and SMOS- 
IC SSM due to the L-band RFI issue in China (Al-Yaari et al., 2019; 
Wigneron et al., 2021), the SSM products were evaluated against in situ 
measurements following four cases (the used SSM products for each case 
can be seen in Table 3): 

Case 1. All available sites with significant correlation coefficients for 
each product were used. The number of sites for the ESA CCI, SMOS-IC, 
ASCAT, LPRM, MTDCA, SMAP-L3, SMAP-L4, SMAP-MCCA, SMAP-IB, 
ERA5-Land, and GLDAS-Noah products is 52, 79, 69, 69, 90, 89, 33, 43, 
59, 56, 88, 70 and 27, respectively. 

Case 2. The common sites with significant correlation coefficients for 
all products were used. The number of available sites for the six products 
is 6. 

Case 3. The common sites with significant correlation coefficients for 
all products except SMOS-IC and SMAP-IB were used. SMOS-IC is 
available for a limited data number compared to the other products and 
was therefore excluded in this case. There are 19 sites available for the 
other eleven products. 

Case 4. The overlapped dates within common sites in Case 3 (i.e., days 
where all satellite and model-based SSM observations are available) for 
all products except SMOS-IC and SMAP-IB were used. There are 3 sites 
available for the other eleven products. 

For RZSM, three cases were considered (the RZSM datasets for each 
case can be seen in Table 3): 

Case 1. All available sites with significant correlation coefficients for 
each product were used. The number of sites for the ESA CCI, ERA5- 
Land, GLDAS-Noah and SMAP-L4 products is 78, 83, 77 and 85, 
respectively. 

Case 2. The common sites with significant correlation coefficients for 
all products were used. The number of available sites for the four 
products is 75. 

Case 3. The overlapped dates (i.e., days where all RZSM observations 
are available) for all products were used. There are 73 sites available for 
the four products. 

Case1 for SSM and RZSM is used assuming that the final users may 
use these products separately (Al-Yaari et al., 2019), and hence limiting 
the evaluation to common dates may not correspond to the actual ac
curacy that the end-user will obtain. Cases 2 and 3 for SSM and Case 2 
for RZSM are used to evaluate the influence of the available sites on our 
evaluation results, and Case 4 for SSM and Case 3 for RZSM are used to 
evaluate the influence of time series length and data sampling in the 
comparisons. 

3.3.2. TCA-based metrics 
In addition to in situ measurements, TCA, an approach commonly 

used in the quality assessment of SSM products (Dong and Crow, 2017), 
was also applied to provide a complimentary evaluation of the SSM 
quality in Jiangsu province. Prior to performing the TCA, we reserved 
the anomaly SSM data by removing the climatology of each SSM prod
uct, as its climatology can be correlated and thus cause the TCA-based 
numbers to be over-graded (Dong et al., 2020a; Draper et al., 2013; 
Kim et al., 2020). The anomaly SSM data was calculated as follows: 

θanom(t) =
θt − θ(t− 17:t+17)

SD
(
θ(t− 17:t+17)

) (12)  

where θanom(t) is the SSM value at day (t) and θ(t− 17:t+17) and SD(θ(t− 17: 

t+17)) are the mean and standard deviation over a sliding window of 35 
days, respectively (Albergel et al., 2012; Gruber et al., 2020). 

Since the TCA is based on the strong assumption of independent 
errors for the three SSM inputs (i.e., three collocated SSM products) 
(Gruber et al., 2016), a conventional combination of SSM triplets 
comprising passive/active microwave product and a model-based 
product was applied. If a product is combined or assimilated into 
another system, the two data sets should not be considered together 
(Kim et al., 2020). For example, the ESA CCI combined SSM products 
was not considered in TCA implementations. In addition, the triplets 
composing of both ASCAT and ERA5-Land were removed in the updated 
version, due to that the ASCAT SSM data was assimilated into ERA5. 
Also, the triplets composing of both ESA CCI and GLDAS-Noah were 
removed due to that the GLDAS-Noah was used in the retrievals of ESA 
CCI. SMOS-IC was not used here due to very limited available data. 
Thus, from the thirteen SSM products, five triplets were considered 
possible for each product (Table 4). Considering the skill estimates for 
some SSM products could be obtained from more than one triplet, we 
averaged all skill estimates for each product for increased precious 

Table 3 
List of the used SSM and RZSM products for each case.  

Cases SSM RZSM 

Case1 

ASCAT, ESA CCI, ESA CCI-P, ESA CCI-A, 
SMOS-IC, LPRM, MTDCA, SMAP-L3, SMAP- 
L4, SMAP-MCCA, SMAP-IB, ERA5-Land, 
GLDAS-Noah 

ESA CCI RZSM, SMAP-L4, 
ERA5-Land, GLDAS-Noah 

Case2 

ASCAT, ESA CCI, ESA CCI-P, ESA CCI-A, 
SMOS-IC, LPRM, MTDCA, SMAP-L3, SMAP- 
L4, SMAP-MCCA, SMAP-IB, ERA5-Land, 
GLDAS-Noah 

ESA CCI RZSM, SMAP-L4, 
ERA5-Land, GLDAS-Noah 

Case3 
ASCAT, ESA CCI, ESA CCI-P, ESA CCI-A, 
LPRM, MTDCA, SMAP-L3, SMAP-L4, SMAP- 
MCCA, ERA5-Land, GLDAS-Noah 

ESA CCI RZSM, SMAP-L4, 
ERA5-Land, GLDAS-Noah 

Case4 
ASCAT, ESA CCI, ESA CCI-P, ESA CCI-A, 
LPRM, MTDCA, SMAP-L3, SMAP-L4, SMAP- 
MCCA, ERA5-Land, GLDAS-Noah   

Table 4 
List of the possible triplets used in the TCA implementations.  

Triplets Passive Active Model 

1 LPRM 

ASCAT GLDAS-Noah 
2 SMAP-L3 
3 MTDCA 
4 SMAP-MCCA 
5 SMAP-IB  
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(Gruber et al., 2020; Zheng et al., 2022). Here, we focused on the TCA- 
based R (hereafter TCA-R), as follows: 

Rx =

̅̅̅̅̅̅̅̅̅̅̅̅σxyσxz

σxxσyz

√

(13)  

where x, y, and z refer to the SSM triplets and σ is the covariance be
tween collocated SSM products. The TCA-R indicates the linear corre
lation against the unknown truth (Gruber et al., 2020; McColl et al., 
2014). To ensure the reliability of the metrics, the TCA was only 

performed for SSM triplets with at least 100 samples (Kim et al., 2020). 
Here, both time-invariant and time-variant TCA-R were estimated by 

applying TCA to SSM data in the whole research period and to SSM 
samples that were collected for every daily time step by considering the 
same triplets. Following Wu et al. (2021a), we used a 100-day window to 
estimate time-variant TCA-R to keep sufficient statistical power. The 
TCA-R was calculated only when the number of triplet samples in the 
time window was >90. Considering the temporal samples for each 
triplet within a 100-day window may not be sufficient to meet the 

Fig. 2. Time series of the in situ SSM and the thirteen SSM products for site M5401 from March 2015 to December 2018 in Jiangsu province for nighttime. Blue solid 
lines represent in situ measurements at 6:00 a.m. Averaged daily precipitation is represented by grey vertical bars. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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sample number requirement (> 90) in our time-variant TCA imple
mentation, a linear interpolation within a 3-day time window was 
applied to fill the temporal gap existing in the active and passive SSM 
time series in Table 4. Although the interpolation may introduce extra 
error into the TCA-R, the extra error was assumed to be small enough to 
be ignored (see Wu et al. (2021a) and Leroux et al. (2013) for more 
details). 

4. Results 

Evaluations of the SSM and RZSM products for the nighttime and 
daytime were made, and the results showed the nighttime SSM and 
RZSM products had similar performances to the daytime SSM and RZSM 
products. Thus, the evaluation results for the nighttime products were 
presented to maintain a simplicity of presentation and interpretation. 
The evaluation results for daytime products were provided in the Sup
plementary Text. 

4.1. SSM evaluation 

4.1.1. In situ-based metrics 
The performance criteria presented in Taylor diagrams and four 

scores were computed between products and in situ SSM from March 
2015 to December 2018 (Figs. 2, 3, and Table 5) and see Fig. S5 for the 
performance of the SSM products for the individual in situ site. As 
mentioned before, four cases were carefully considered. 

Fig. 2 shows the temporal variations of the thirteen SSM products, 
the in situ SSM and rainfall of one representative site (i.e., site M5401) 

with relative complete temporal samplings for nighttime. All SSM 
products except for LPRM and ESA CCI-P correspond well with rainfall, 
with the SSM increasing during rainfall events and decreasing after 
rainfall events. The ERA5-Land, SMAP-L4, GLDAS-Noah and ESA CCI 
SSM products captured well the annual cycle of the in situ measure
ments. In comparison, the other nine SSM products were more scattered 
than the products mentioned above. ESA CCI-P and LPRM overestimated 
in situ SSM with large wet biases, while ESA CCI-A, ASCAT and MTDCA 
SSM tended to underestimate in situ SSM. Despite the lowest number of 
retrievals for SMOS-IC due to the effects of RFI in the study area, it could 
marginally follow the temporal evolution of in situ SSM. 

Fig. 3(a) shows the overall performance obtained by each product 
over all available sites (Case 1). Regarding R, the ERA5-Land and SMAP- 
L4 SSM products outperformed the other eleven datasets with a higher R 
of 0.58. It was followed by ESA CCI, ESA CCI-A and GLDAS-Noah (me
dian R = 0.42 for ESA CCI and R = 0.40 for ESA CCI-A and GLDAS-Noah) 
(Table 5). LPRM failed to reproduce the temporal evolution of observed 
SSM with a low R and large variability in the SSM retrievals at available 
sites (median R = 0.20 and SD > 0.09). Regarding ubRMSE (Table 5), 
the ESA CCI and GLDAS-Noah products outperformed the others, with 
the same lowest ubRMSE of 0.04 m3/m3, followed by SMAP-L4 and 
ERA5-Land with a value of 0.05 m3/m3 and 0.06 m3/m3, respectively. 
For the rest datasets, the ubRMSE values all exceeded 0.07 m3/m3, and 
LPRM occupied the highest (median ubRMSE = 0.10 m3/m3). Six SSM 
datasets (i.e., ESA CCI, ESA CCI-P, ERA5-Land, GLDAS-Noah, LPRM, and 
SMAP-L3) overestimated in situ SSM, in which LPRM and ESA CCI-P 
obtained overall higher bias (median bias = 0.19 m3/m3 for LPRM 
and bias = 0.12 m3/m3 for ESA CCI-P) than the other four SSM products 

Fig. 3. Taylor’s diagrams displaying a statistical comparison between ASCAT, ESA CCI, ESA CCI-P, ESA CCI-A, ERA5-Land, GLDAS-Noah, SMOS-IC, LPRM, MTDCA, 
SMAP-L3, SMAP-L4, SMAP-MCCA and SMAP-IB SSM products with the in situ observed SSM for morning time during 2015–2018. The green dash lines represent the 
centered RMSE (cRMSE) values, which distance the ‘Obs’ point. (a) – (d) show the median error metrics from Case 1 to Case 4, respectively. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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(median bias <0.03 m3/m3). In contrast, ESA CCI-A, SMAP-L4 and 
ASCAT got large systematical dry biases against in situ SSM (median bias 
< − 0.05 m3/m3). 

Fig. 3(b) shows the overall performance on common sites for all 
products (Case 2), which was almost the same as the performance of all 
available sites for each product above. ERA5-Land and SMAP-L4 out
performed the others, with a higher R of 0.61 and 0.60, respectively. It 
was followed by ESA CCI, ESA CCI-A, GLDAS-Noah, ASCAT and ESA 
CCI-P (median R > 0.43). Similar to Case1, ESA CCI and GLDAS-Noah 
obtained the lowest ubRMSE (median ubRMSE = 0.04 m3/m3), while 
LPRM had the poorest performance in Case 2 with the lowest R of 0.2 
and the highest ubRMSE and wet bias (median ubRMSE = 0.11 m3/m3 

and bias = 0.15 m3/m3). 
Fig. 3(c) shows the overall performance for all products except 

SMOS-IC and SMAP-IB over common sites (Case 3). With regard to R, 
SMAP-L4 and ERA5-Land outperformed the others, with a higher R of 
0.60 and 0.59. It was followed by ESA CCI with R of 0.52. Regarding 
errors, the ESA CCI and GLDAS-Noah products obtained the best esti
mates comparing the rest, with the lowest ubRMSE (median ubRMSE =
0.04 m3/m3) and bias (median bias = − 0.01 m3/m3), respectively, fol
lowed by ERA5-Land (median ubRMSE = 0.06 m3/m3 and bias = 0.01 
m3/m3). 

Fig. 3(d) shows the overall performance on common dates for all 
products except SMOS-IC and SMAP-IB (Case 4). SMAP-L4 performed 
better than the other SSM products, with the highest R (median R =
0.72). It was followed by GLDAS-Noah, ASCAT, ESA CCI, EREA5-Land, 
LPRM (median R > 0.54). Nevertheless, the largest errors were also 
obtained by LPRM with the highest bias (0.14 m3/m3) and ubRMSE 
(0.13 m3/m3). The good ability in capturing the SSM temporal variation 
was reconfirmed by the slope obtained between ERA5-Land and 
observed SSM with a value of 0.90, which is very close to 1. In addition, 
ERA5-Land had the lowest bias with a negligible value (close to zero) 
and ubRMSE (0.02 m3/m3). It was followed by GLDAS-Noah and ESA 
CCI (bias = − 0.03 m3/m3 and bias = − 0.04 m3/m3). 

Overall, the model-based and combined SSM products (i.e., ERA5- 
Land, SMAP-L4, ESA CCI/ESA CCI-P/ESA CCI-A, GLDAS-Noah) per
formed better than the active SSM product (i.e., ASCAT), than the pas
sive satellite SSM products (i.e., SMAP-L3, SMOS-IB, SMAP-IC, MTDCA, 

SMAP-MCCA and LPRM) in Jiangsu province for all cases except Case4, 
in which LPRM had better performance than ESA CCI-P and ESA CCI-A 
when considering R values. It was suggested that the number of avail
able in situ sites and temporal sampling for the SSM products do influ
ence their performances (note that the available number of SMOS-IC and 
SMAP-IB SSM retrievals is limited in Jiangsu province in comparison to 
the other products). 

4.1.2. TCA-based metrics 
Prior to the time-invariant and time-variant TCA implementation, it 

is necessary to clarify the impact of the error cross-correlation (ECC) for 
each SSM triplet comprising a passive/active microwave product and a 
model-based product. The ECC between passive and active satellite SSM 
products has been found to have a limited impact on the TCA imple
mentation (Chen et al., 2018a). Here, the TCA-R calculated using the 
SSM anomalies of in situ-based triplets (i.e., in situ, active, passive) were 
also considered and compared with those of the model-based triplets in 
Table 4 to clarify the impact of the ECC between model-based and 
satellite-based SSM products, as the in situ measurements was consid
ered as an independent SSM data. A small ECC impact could be indicated 
by that model-based TCA-R values are consistent with in situ-based TCA- 
R and their differences are small (Wu et al., 2021a). 

Fig. 4 shows the differences in R for GLDAS-Noah-based and in situ- 
based TCA-R for both time-invariant TCA and time-variant TCA imple
mentation. It can be seen that the differences between them for all 
triplets were small as associated median values of the difference in R 
were distributed in the range from − 0.19 to 0.14 for time-invariant TCA 
implementation and from − 0.07 and 0.10 for time-variant TCA imple
mentation, respectively. In addition, the scatterplots in Figs. S6 and S7 
also show that the majority of the scatter points are distributed near the 
1:1 line, indicating that the GLDAS-Noah-based TCA-R values were 
highly consistent with the in situ-based TCA-R. Based on the aforemen
tioned two reasons, we concluded that the ECC between model-based 
and satellite-based SSM products can barely impact the TCA imple
mentations. Fig. 5 shows the comparison between the time-invariant 
and time-variant TCA-R and in situ-based R calculated using the SSM 
anomalies for seven SSM products. Similar performances were observed 
between TCA-R and in situ-based R, indicating the robustness of the TCA 

Table 5 
Summary median metrics of comparing thirteen SSM products with in situ measurements for each Case for nighttime. Bias and ubRMSE are both in m3/m3. N is the 
average number of samples. The bold font highlights the best results for each error metric.  

Cases Products bias ubRMSE R slope N Sites  Cases Products bias ubRMSE R slope N Sites 

Case 1 ASCAT − 0.05 0.07 0.38 0.63 607 52  Case 3 ASCAT − 0.09 0.07 0.40 0.77 612 19 
ESA CCI 0.03 0.04 0.42 0.30 1277 79  ESA CCI ¡0.01 0.04 0.52 0.46 1285 19 
ESA CCI-P 0.12 0.07 0.37 0.54 898 69  ESA CCI-P 0.10 0.07 0.43 0.71 996 19 
ESA CCI-A − 0.07 0.07 0.40 0.71 1266 69  ESA CCI-A − 0.09 0.07 0.45 0.88 1276 19 
ERA5-Land 0.02 0.06 0.58 0.88 1293 90  ERA5-Land 0.01 0.06 0.59 0.89 1271 19 
GLDAS-Noah 0.02 0.04 0.40 0.30 1292 89  GLDAS-Noah ¡0.01 0.04 0.45 0.36 1271 19 
SMOS_IC − 0.04 0.09 0.30 0.63 110 33  SMOS_IC – – – – – – 
LPRM 0.19 0.10 0.20 0.41 632 43  LPRM 0.16 0.09 0.20 0.44 672 19 
MTDCA − 0.09 0.09 0.29 0.63 636 59  MTDCA − 0.10 0.11 0.27 0.67 644 19 
SMAP_L3 0.01 0.08 0.26 0.46 602 56  SMAP_L3 − 0.04 0.08 0.31 0.54 596 19 
SMAP_L4 − 0.06 0.05 0.58 0.68 1293 88  SMAP_L4 − 0.10 0.05 0.60 0.69 1271 19 
SMAP_MCCA − 0.02 0.08 0.24 0.45 626 70  SMAP_MCCA − 0.07 0.10 0.21 0.46 593 19 
SMAP_IB − 0.02 0.07 0.30 0.42 212 27  SMAP_IB – – – – – – 

Case 2 ASCAT − 0.10 0.07 0.45 0.86 623 6  Case 4 ASCAT − 0.06 0.05 0.58 0.94 88 3 
ESA CCI − 0.02 0.04 0.53 0.42 1270 6  ESA CCI − 0.04 0.04 0.55 0.44 88 3 
ESA CCI-P 0.08 0.06 0.43 0.78 1032 6  ESA CCI-P 0.06 0.05 0.51 0.61 88 3 
ESA CCI-A − 0.10 0.07 0.50 0.98 1275 6  ESA CCI-A − 0.06 0.05 0.47 0.80 88 3 
ERA5-Land 0.01 0.06 0.61 0.90 1276 6  ERA5-Land 0.00 0.02 0.54 0.90 88 3 
GLDAS-Noah ¡0.01 0.04 0.45 0.37 1276 6  GLDAS-Noah − 0.03 0.03 0.68 0.52 88 3 
SMOS_IC − 0.12 0.10 0.30 0.71 138 6  SMOS_IC – – – – – – 
LPRM 0.15 0.11 0.20 0.47 762 6  LPRM 0.14 0.13 0.54 0.84 88 3 
MTDCA − 0.09 0.11 0.24 0.73 656 6  MTDCA − 0.06 0.02 0.34 0.70 88 3 
SMAP_L3 − 0.05 0.09 0.37 0.63 602 6  SMAP_L3 − 0.06 0.03 0.52 0.70 88 3 
SMAP_L4 − 0.13 0.05 0.60 0.88 1276 6  SMAP_L4 − 0.10 0.10 0.72 0.84 88 3 
SMAP_MCCA − 0.08 0.10 0.21 0.56 597 6  SMAP_MCCA − 0.07 0.04 0.28 0.42 88 3 
SMAP_IB − 0.04 0.10 0.33 0.69 177 6  SMAP_IB – – – – – –  
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method. Generally, the MTDCA, SMAP-IB, and GLDAS-Noah SSM 
products performed better than ASCAT, SMAP-L3, SMAP-MCCA and 
LPRM with higher TCA-R. Besides, a combination of SSM triplets 
comprising in situ measurements, GLDAS-Noah and passive/active mi
crowave products was applied to compare the performance of the active 
versus passive SSM products (Fig. S8), and the performances for the 
passive/active microwave products were almost the same with the re
sults above. In general, the R values for all SSM products obtained from 
both time-invariant and time-variant TCA implementations were higher 
than in situ-based R, suggesting that the TCA implementation may sta
tistically correct the random errors of the in situ measurements. 

In addition, the time-invariant and time-variant TCA-R values 
calculated using the simple SSM anomalies were also presented in the 
Supplementary Information (Fig. S12) to provide complementary in
formation for readers. Simple SSM anomalies were calculated by 
removing the climatology from the original SSM time series. Similar 
TCA-R values calculated by the simple SSM anomalies (Fig. S12) and 
normalized SSM anomalies (Fig. 5) were observed. 

4.2. RZSM evaluation 

Since ESA CCI outperformed the other satellite SSM products, it was 
first coupled with an exponential filter to estimate ESA CCI RZSM for 
each site in Jiangsu province. Then, four RZSM products (i.e., ESA CCI, 
ERA5-Land, GLDAS-Noah and SMAP-L4 RZSM) were evaluated against 

the in situ measurements by considering three cases and see Fig. S13 for 
the performance of the RZSM products for the individual in situ site. The 
TCA implementation for RZSM was not conducted as the applied RZSM 
products could hardly meet the strong assumption of independent errors 
for the three RZSM inputs. 

Fig. 6 presents the correlation coefficients (R) values computed be
tween the in situ RZSM and ESA CCI RZSM retrievals using different T 
parameters (1–60 days) with the exponential filter method and the 
distribution of the number of sites with Topt. Although the Topt varies 
from one site to another, a relatively higher number of sites was ranged 
from 7 days to 10 days than the other T values. Besides, it can be seen the 
optimal median R (R = 0.57) between in situ RZSM and the retrieved 
RZSM was observed in Topt = 10 days. Thus, an overall value of Topt for 
Jiangsu province was determined to be 10 days. As illustrated over one 
representative site, the temporal evolution of the ESA CCI RZSM re
trievals was well consistent with the in situ RZSM, and present lower 
frequency variations than the ESA CCI SSM (Fig. 7). 

Fig. 8 shows the temporal evolution of the four RZSM products along 
with the in situ RZSM for three representative sites (i.e., site 58,235, 
58,252 and M5401) from March 2015 to December 2018. It can be seen 
that these products underestimated but captured well the temporal 
evolution of the in situ RZSM. 

For all three cases, the four RZSM products were almost performed 
the same (Fig. 9 and Table 6). Regarding correlation coefficient (R), 
ESA-CCI, ERA5-Land and SMAP-L4 obtained better scores than GLDAS- 
Noah, with a higher median R > 0.54. The slope of SMAP-L4 was closer 
to 1 for all cases, relative to GLDAS-Noah, ranging from 0.52 to 0.58. 
Regarding ubRMSE, all products performed well with low median 

Fig. 4. Boxplots of the differences between triplets 1–5 (in Table 4) and in situ- 
based TCA-R calculated using SSM anomalies for both (a) time-invariant and (b) 
time-variant TCA implementations. The boxplots in blue and red indicate active 
and passive products, respectively. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 5. Boxplots of the (a) time-invariant and (b) time-variant TCA-R for LPRM, MTDCA, SMAP-L3, SMAP-MCCA, SMAP-IB, ASCAT and GLDAS-Noah. The black stars 
indicate the median R of in situ-based R calculated using normalized SSM anomalies. 

Fig. 6. The distribution of the number of sites for Topt (left y axis) and the 
median R for all sites with a range of T values (right y axis). The median R was 
only calculated for the sites with significant correlation coefficients (P-Value 
< 0.05). 
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ubRMSE values (ubRMSE <0.05 m3/m3). The RZSM products were 
mostly dryer than the in situ RZSM with median bias ranging from 
− 0.04–-0.08 m3/m3. 

5. Discussion 

The evaluation results showed that the model-based and combined 
SSM products (i.e., ERA5-Land, SMAP-L4, ESA CCI/ESA CCI-P/ESA CCI- 
A, GLDAS-Noah) performed better than the other SSM and RZSM 
products. It could be partly attributed to that the LSM of the model- 
based products has been substantially updated, leading to better SSM 
and RZSM dynamics. For instance, a revised soil hydrology parameter
ization scheme for ERA5-Land (the Carbon Hydrology-Tiled ECMWF 
Scheme for Surface Ex155 changes over Land: CHTESSEL) was used by 
introducing an improved soil hydrologic conductivity formulation, 
diffusivity, and surface runoff based on variable infiltration capacity 
(Muñoz-Sabater et al., 2021). This result contrasts with our previous 
SSM and RZSM evaluation, which revealed the poor performance of 
ERA5-Land over the permafrost regions of the Qinghai-Tibet plateau 
(Xing et al., 2021). This could be partly explained by the impact of the 
freezing and thawing cycle in such areas, which does not exist in Jiangsu 
province, and has not been fully considered within the ERA5-Land LSM 
(Hu et al., 2020). This result is also in line with Wu et al. (Wu et al., 
2021b), reporting that the ERA5-Land SSM products had better perfor
mance in southern humid areas than in northern arid and cold regions in 
China. 

5.1. Potential errors for the SSM datasets 

The evaluation results showed that the SSM datasets had different 
performances in Jiangsu province. The accuracy of these datasets could 
be impacted by many factors, like vegetation, topographic complexity, 
water bodies, RFI, etc. (maps of the relating reference variables like the 
land cover, DEM and VOD were presented in Figs. 1(b) and (c) and 
Fig. S14). Here, the correlation coefficients between the accuracy of the 
thirteen SSM datasets (i.e., correlation coefficients (R) between 

observations and each SSM product) and the values of the influence 
factors were calculated to explore the potential influence factors 
(Table 7). Since the errors for each SSM product were investigated 
separately, the significant R between the SSM products and the in situ 
measurements calculated by all available sites were used (i.e., Fig. 3(a) 
and Case 1 in Table 5). The available sites for the ASCAT, ESA CCI, ESA 
CCI-P, ESA CCI-A, ERA5-Land, GLDAS-Noah, SMOS-IC, LPRM, MTDCA, 
SMAP-L3, SMAP-L4, SMAP-MCCA and SMAP-IB products in Case 1 are 
52, 79, 69, 69, 90, 89, 33, 43, 59, 56, 88, 70 and 27, respectively. In the 
following section, only the potential factors having a significant (p-value 
< 0.05) correlation with the accuracy of the SSM products were shown 
and discussed. 

5.1.1. Water fraction (WF) 
Open water bodies cause substantial uncertainties in the satellite- 

derived and model-based SSM retrievals (Yang et al., 2021a). The 
pixels or grids contaminated by coastal areas or inland water bodies 
physically lead to low TB, backscatters, and temperatures for passive, 
and active satellite sensors and models, respectively, resulting in 
increasing/decreasing values of SSM retrievals accordingly (Gouwe
leeuw et al., 2012; Paulik et al., 2014). 

Fig. S15 and Table 7 showed that the accuracy of the ERA5-Land and 
GLDAS-Noah SSM products were significantly negatively correlated 
with WF with R of − 0.43 and − 0.26, suggesting the higher accuracy of 
the two SSM products over the sites having low WF. Besides, the biases 
of the thirteen SSM products for different WFs were also displayed in 
Fig. 10, it can be seen that ERA5-Land and GLDAS-Noah exhibited wet 
biases over the sites with high WF. For example, the median bias for 
GLDAS-Noah SSM was approximately 0.02 m3/m3 when WF ranges from 
0 to 0.1, approximately 0.04 m3/m3 when WF ranges from 0.1 to 0.3 and 
reached 0.09 m3/m3 when WF ranges from 0.3 to 0.5 (Fig. 10). This is in 
line with the result of Li et al. (2012), which found that the grids asso
ciated with high WF lead to low temperatures and thus less water 
evaporation, leading to an increase in SSM. 

In addition, a similar increasing pattern of the SSM bias with the 
increase of WF was founded between ESA CCI and GLDAS-Noah, 

Fig. 7. Time series of (a) in situ SSM over the 0–10 cm soil layer and ESA CCI SSM, and (b) in situ RZSM over the 0–100 cm soil layer and ESA CCI RZSM at the site 
58,252 during 2015–2018. 
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indicating the wet bias of ESA CCI could be resulted from the wet bias of 
GLDAS Noah SSM as the uncertainty of the GLDAS-Noah model was 
included during the unit scaling and the TCA hypothetical destruction 
during ESA CCI SSM’s merging scheme (Al-Yaari et al., 2019; Zeng et al., 
2022). Thus, the accuracy of the ESA CCI, GLDAS-Noah and ERA5-Land 
SSM products was expected to be enhanced by considering the water 
effect. 

No significant R between WF and the accuracy of satellite SSM was 
observed. It could be explained by the fact that some filters related to WF 
were applied to filter the pixels contaminated by water bodies, though 
some uncertainties related to water fraction could still exist in some SSM 
products. 

5.1.2. Vegetation optical depth (VOD) 
VOD, related to the intensity of microwave extinction effects within 

the vegetation canopy layer, is often regarded as a vegetation index (Fan 
et al., 2018; Li et al., 2021). Its accuracy also highly impacted the ac
curacy of the radiometric SSM retrievals over the vegetated regions 
(Wigneron et al., 2017). 

Table 7 and Fig. S15 showed that the accuracy of the GLDAS-Noah 
and merged (i.e., ESA CCI and ESA CCI-P) SSM product was 

significantly positively correlated with VOD with R of 0.23, 0.32 and 
0.23, indicating the dense vegetation covers could hardly affect the 
accuracy of the above SSM products. While the accuracy of the satellite- 
based SSM products (i.e., MTDCA and SMAP-MCCA) was significantly 
negatively correlated with VOD with R of − 0.46 and − 0.31, suggesting 
that MTDCA and SMAP-MCCA SSM performed better over sites covered 
with sparse vegetation than over ones with dense vegetation covers in 
Jiangsu province. This could be explained that the VOD over dense 
vegetation layers was higher than that in sparsely vegetated regions, 
making the impact of the soil signal on the total above-canopy emission 
smaller and thus SSM retrievals less accurate over dense vegetation 
covers (Grant et al., 2008). 

5.1.3. Radio-frequency interference (RFI) 
RFI influences the quantity and quality of TB received by radiome

ters, influencing the SSM retrievals (Wigneron et al., 2021). Fig. S16 
presents the spatial distribution of L-band RFI (in terms of TB-RMSE <8 
K) and correlation coefficients (R) between SMOS-IC and in situ SSM. 
The SMOS-IC pixels over most sites had high RFI values, preventing 
retrievals of high-quality SSM data. Besides, significantly positive R 
values between SMOS-IC and in situ SSM were observed over the region 

Fig. 8. Time series of the in situ RZSM and the four RZSM products for (a) site 58,235, (b) site 58,252 and (c) site M5401 from March 2015 to December 2018 in 
Jiangsu province. Blue solid lines represent averaged in situ measurements. Averaged daily precipitation is represented by grey vertical bars. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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having lower RFI values (TB-RMSE <6 K), suggesting that the perfor
mance of SMOS-IC SSM could be mainly affected by RFI over Jiangsu 
province. We also plotted the scatterplots between RFI (i.e., TB-RMSE) 
and the significant R values of SMOS-IC for in situ sites (Fig. S17), but 
no significant R between them was observed. 

Apart from the above errors, some uncertainties should also not be 
ignored. For example, the spatial mismatch between in situ sites and 
satellite and model-based products could exist. Besides, differences in 
the sampling depths among the sensors and products may also bring 
some uncertainties to the assessment (Li et al., 2022). Nevertheless, 

despite these limitations, the method used to assess the products is 
relatively reasonable as 1) all the ninety-one in situ sites are evenly 
distributed throughout Jiangsu province. 2) we considered the R, 
ubRMSE, and cRMSE as the main metrics for the assessment as they are 
less impacted by the spatial mismatch between in situ site and products. 

Fig. 9. Taylor’s diagrams displaying a statistical comparison between ESA CCI, SMAP-L4, ERA5-Land and GLDAS- Noah RZSM products with in situ RZSM during 
2015–2018. The green dash lines represent the centered RMSE (cRMSE) values, which distance the ‘Obs’ point. (a) – (c) show the median error metrics from Case 1 to 
Case 3, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 6 
Summary median metrics of comparing four RZSM products with in situ mea
surements for each Case. Bias and ubRMSE are both in m3/m3. N is the average 
number of samples. The bold font highlights the best results for each error 
metric.  

Cases Products bias ubRMSE R slope N Sites 

Case 1 ESA CCI − 0.06 0.05 0.54 1.55 1080 78 
ERA5-Land ¡0.04 0.04 0.55 1.23 1154 83 
GLDAS-Noah − 0.05 0.03 0.43 0.52 1154 77 
SMAP-L4 − 0.08 0.03 0.55 0.82 1154 85 

Case 2 ESA CCI − 0.06 0.05 0.55 1.71 1082 75 
ERA5-Land ¡0.04 0.04 0.56 1.27 1154 75 
GLDAS-Noah − 0.05 0.03 0.44 0.55 1154 75 
SMAP-L4 − 0.08 0.03 0.56 0.95 1154 75 

Case 3 ESA CCI − 0.07 0.05 0.55 1.73 1084 73 
ERA5-Land ¡0.04 0.03 0.58 1.31 1084 73 
GLDAS-Noah − 0.06 0.02 0.46 0.58 1084 73 
SMAP-L4 − 0.08 0.01 0.57 1.00 1084 73  

Table 7 
Summary R by comparing the significant R (between thirteen SSM products and 
in situ observations) with potential factors (i.e., VOD, and WF). The relationship 
with significant (P-Value < 0.05/0.01, */**) correlation coefficients are shown.  

Products VOD WF 

R P-Value R P-Value 

ASCAT − 0.05 0.70 0.05 0.75 
ESA CCI 0.23* 0.04 − 0.20 0.07 
ESA CCI-P 0.32** 0.01 − 0.05 0.70 
ESA CCI-A 0.04 0.77 − 0.19 0.11 
ERA5-Land 0.18 0.08 − 0.43** 0.00 
GLDAS-Noah 0.23* 0.03 − 0.26* 0.01 
SMOS-IC − 0.09 0.63 0.26 0.15 
LPRM 0.26 0.10 − 0.03 0.86 
MTDCA − 0.46** 0.00 0.12 0.36 
SMAP-L3 − 0.25 0.06 0.20 0.14 
SMAP-L4 0.07 0.52 0.00 0.99 
SMAP-MCCA − 0.31** 0.01 − 0.04 0.75 
SMAP-IB 0.09 0.62 − 0.17 0.33  
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5.2. Influence of the evaluation strategies on the metrics of the SSM and 
RZSM datasets 

Four cases for SSM and three cases for RZSM were used to investigate 
the influence of the available sites and data samplings on the SSM and 
RZSM performance metrics in the evaluation, respectively. Overall, all 
SSM products’ performance ranking was generally consistent for Case1- 
Case3, while slightly better metric scores and different performance 
were obtained in Case 4 when considering overlapped dates within 
common sites for all products. For RZSM, all cases have similar perfor
mance rankings as they were less affected by the influence of the 
available sites and data samplings. 

Previous studies have shown that the most frequently used evalua
tion method is Case 1, which uses all available sites and data samplings 
(e.g., (Al-Yaari et al., 2019; Xing et al., 2021; Zeng et al., 2015)). Case 1 
assumes that the potential users may use the SSM or RZSM products 

separately, hence, each product’s actual accuracy was evaluated and 
presented separately (Al-Yaari et al., 2019). The evaluation results be
tween the SSM and RZSM products with in situ measurements from 2011 
to 2018 were added in the Supplementary Information (Table S4). 
However, the method could be biased for some products in the inter- 
comparison, as different sites and dates were used for these products. 
For instance, SMOS-IC (Sites = 33 and average N = 110) has fewer dates 
and sites than LPRM (Sites = 43 and average N = 632) because RFI 
strongly influenced the former in Jiangsu province (Table 5). 

The common sites were used in Case 2 (Sites = 7) and Case 3 (Sites =
18) for SSM by either including or excluding SMOS-IC and SMAP-IB, 
respectively. Our results showed that the SSM products’ performance 
in the two cases (particularly Case 3) was almost consistent with that in 
Case 1, suggesting stable accuracy of the SSM products in the two cases 
due to the low uncertainties in flat areas in Jiangsu province and rela
tively complete temporal samplings of the products. 

Fig. 10. Box plots of bias for the thirteen SSM products considering WF classifications.  
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Slightly better performances were obtained for SSM and RZSM 
products in Case 4 and Case 3, respectively, when considering over
lapped dates within common sites for all products. This is in line with the 
results obtained by Al-Yaari et al. (Al-Yaari et al., 2019), reporting 
increasing R when overlapped data points are conducted. This could be 
partly attributed to a much stricter filtering rule when using collocated 
data than in the other cases because only the high-quality satellite and 
model-based SSM and RZSM values were reserved for the evaluation in 
that case. Thus, a much stricter filtering rule could be applied by 
combining the quality controls of the different SSM products. Moreover, 
overlapped dates could be optimal to ensure fair inter-comparisons 
among different products (Gruber et al., 2020). However, a different 
performance ranking was obtained for SSM between Case4 and the other 
three cases, which may be due to the limited availability of the in situ 
sites (only 3 sites) and temporal samplings (only 88 data) that deviated 
from the evaluation results. Thus, it is important to select appropriate 
evaluation strategies to conduct the SSM and RZSM evaluations ac
cording to the situations. 

5.3. Comparisons among the two TCA and in situ-based R 

Our evaluation results showed that a similar performance for the 
SSM products was obtained using time-invariant and time-variant TCA- 
R and in situ-based R calculated using SSM anomalies, suggesting that 
the TCA method can be used for the satellite and reanalysis SSM eval
uation in the absence of ground truth (Fig. 5). However, the TCA-R for 
the SSM products was consistently higher than the in situ-based R. This 
could be due to the in situ-based R may contain errors associated with the 
representativeness of the in situ sites, as spatial mismatches could exist 
between the SSM values obtained from in situ sites and from remotely 
sensed reanalysis SSM products with a coarse resolution (Crow et al., 
2015; Dong et al., 2020b). 

Considering both time-invariant and time-variant TCA-R are neces
sary for accurate SSM retrievals at different time scales over the crop
land. Our evaluation results showed that the daily R values obtained by 
time-variant TCA implementation have larger temporal variability than 
the time-invariant R derived from long-term TCA (Fig. 5). This is 
consistent with the results of previous studies (e.g., (Su et al., 2014); Wu 
et al. (2021a), etc.), which also found large SSM temporal variability at 
short time scales. This could be attributed to the influence of other 
factors (e.g., rainfall, vegetation growth, etc.) over the whole research 
period in the croplands, as dense vegetation covers and rainfall increase 
the difficulty and introduce large uncertainties in retrieving SSM using 
TB or backscattering coefficients. For example, we compared the median 
time-variant TCA-R at different VOD ranges and found that a decreasing 
accuracy for the satellite SSM products (e.g., MTDCA, SMAP-MCCA and 
SMAP-IB) was obtained over the vegetation growth period (VOD >
0.15). This also confirmed our results above that the accuracy of MTDCA 
and SMAP-MCCA SSM could be affected by the influence of dense 
vegetation covers (Fig. S18). 

6. Conclusions 

This study assessed the performance of thirteen SSM and four RZSM 
datasets using in situ measurements under different evaluation strategies 
in Jiangsu province. We also inter-compared time-invariant, time- 
variant TCA-R and in situ-based R. The impacts of vegetation and 
water fraction on the accuracy of the reanalysis and satellite-based SSM 
products were also investigated. Our conclusions are as follows.  

(1) Regarding SSM, the model-based and combined SSM products (i. 
e., ERA5-Land, SMAP-L4, ESA CCI/ESA CCI-P/ESA CCI-A, 
GLDAS-Noah) performed better than the active SSM product (i.e., 
ASCAT), than the passive satellite SSM products (i.e., SMAP-L3, 
SMOS-IB, SMAP-IC, MTDCA, SMAP-MCCA and LPRM) in 
Jiangsu province with higher R and lower ubRMSE. Similar 

performance rankings were observed among time-invariant and 
time-variant TCA-R and in situ-based R, in which the TCA-R 
values for all SSM datasets were higher than the in situ-based R as 
the representativeness errors of the in situ measurements may bias 
in situ-based R. Besides, considering both time-invariant and 
time-variant TCA-R are necessary for accurate SSM retrievals at 
different time scales.  

(2) Regarding RZSM, ERA5-Land, SMAP-L4 and ESA CCI RZSM 
(retrieved using ESA CCI SSM coupled with an exponential filter) 
generally performed better than the GLDAS-Noah RZSM product 
in capturing the temporal evolution of in situ RZSM with an 
average R > 0.55 for the former three products vs. an average R of 
0.44 for GLDAS-Noah. All the RZSM products performed well 
with low median ubRMSE values (ubRMSE <0.05 m3/m3).  

(3) Both the SSM and RZSM products provided slightly higher scores 
when the different datasets were temporally collocated, as many 
strict filtering rules were applied, and it could be regarded as an 
optimal way to ensure fair comparisons. However, it is important 
to select appropriate evaluation strategies to conduct the SSM 
and RZSM evaluations according to the situation as the available 
sites and temporal samplings may bias the evaluation results.  

(4) By exploring the potential errors for the SSM products, we found 
the accuracy of the ESA CCI, GLDAS-Noah and ERA5-Land SSM 
products was expected to be enhanced by considering the water 
effect and large uncertainties were observed for MTDCA and 
SMAP-MCCA SSM over dense vegetation periods and regions in 
Jiangsu province. Besides, the limited available data number of 
SMOS-IC in the study region could be mainly attributed to RFI. 

Data availability 

The soil moisture observations in Jiangsu province is not publicly 
available but could be requested from the Jiangsu Meteorological In
formation Center (http://js.cma.gov.cn/). SMAP-MCCA SSM data is 
freely available at https://data.tpdc.ac.cn/en/disallow/591bb9c8-ed6 
f-4e86-8372-de1c39ba0283/. SMOS-IC and SMAP-IB SSM products 
from this study are freely available from SMOS-IC website (https://ib. 
remote-sensing.inrae.fr/). MTDCA SSM data is freely available at htt 
p://afeldman.mit.edu/mt-dca-data. AMSR2 LPRM SSM product is 
freely available at https://disc.gsfc.nasa.gov/datasets/LPRM_AMSR2_A 
_SOILM3_001/summary. SMAP-L3 SSM and VOD data (https://nsidc. 
org/data/spl3smp/versions/8) and SMAP L4 SSM and RZSM data (htt 
ps://nsidc.org/data/spl4smgp/versions/6) are freely available from 
the National Snow & Ice Data Center. ASCAT SSM data is freely available 
at http://hsaf.meteoam.it/description-h25-h108-h111.php. ESA CCI 
Combined/Active/Passive SSM data is freely available at http://www.es 
a-soilmoisture-cci.org. ERA5-Land soil moisture and precipitation 
products are freely available at https://cds.climate.copernicus.eu/cds 
app#!/dataset/reanalysis-era5-land?tab=overview. GLDAS-Noah SSM 
and RZSM products are freely available at https://disc.gsfc.nasa.go 
v/datasets/GLDAS_NOAH025_3H_2.1/summary. IGBP MODIS land 
cover product is freely available at https://modis.gsfc.nasa.gov/data/ 
dataprod/mod12.php. Additional data used in the paper are publicly 
available, with their location provided in the respective references. 
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