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A B S T R A C T   

UAV-borne LiDAR is an innovative and effective technique for tree encroachment detection in high voltage 
powerline corridor. However, the periodical inspection of the whole powerline corridor is inefficient, as the 
powerline segments occurring the tree encroachment only account for a very small part. In this paper, taking one 
segment of the powerline corridor in Taining County, Fujian province, China as the test site, we acquired the 
point cloud data using a UAV-borne LiDAR, and then combined the tree growth model and two-phase 
encroachment detection algorithm to realize efficiently early detection of tree encroachment. First, the points 
of powerlines and trees were classified from the point cloud, and then the individual tree heights and the 
belonging tree species were extracted. Based on tree plot data, the relationships between tree heights and tree 
ages were established using Richards growth model. Secondly, the individual tree heights were predicted at given 
time points, and the tree encroachments were detected in advance according to the required safe distance be-
tween powerlines and trees. To tackle the huge amount of point cloud data and calculation, the two-phase tree 
encroachment detection algorithm based on bounding boxes was applied to replace the traditional point traversal 
algorithm. As a result, the exact locations of tree encroachment were early detected and the specific encroaching 
trees were also pre-identified. Lastly, the pre-detected tree encroachment should be verified through field survey, 
and treated accordingly. Thus, the inspection efficiency would be greatly improved. In accuracy assessment, the 
coefficient of determination (R2) and the root mean square error (RMSE) of fitted growth model for Masson pine 
were 0.812 and 2.308 m, and 0.861 and 2.556 m for Eucalyptus, respectively. Compared with point traversal 
algorithm, the calculation efficiency of the two-phase tree encroachment detection algorithm was improved by 
nearly 76 times on average.   

1. Introduction 

High voltage powerlines are the important infrastructure to transmit 
electric power for daily life and industrial production (Guo et al., 2016; 
Ortega et al., 2019). The neighboring three-dimensional (3D) space 
surrounding the powerlines and the relevant facilities is usually called 
the powerline corridor. In the corridor, the other things such as build-
ings and plants should keep a certain safe distance from the powerlines. 
Generally, the safe distance becomes longer accordingly with the in-
crease of the voltage. Due to the long transmission distance and large 
coverage area of the power grid, some powerlines have to pass across 
large forests in mountainous areas. The neighboring trees often grow 

into the safe space of the powerlines, probably causing power outages or 
start a fire in the surrounding forest (Ahmad et al., 2013; Liu et al., 2019; 
Ma et al., 2020). Therefore, it is of significant value to timely detect and 
fell trees encroaching into the safe space of high voltage powerlines. 

The traditional powerline inspection is done via field survey. The 
inspectors observe and roughly estimate the distance between the 
powerlines and the underneath forest (Mills et al., 2010; Wang et al., 
2017). This method has a long inspection cycle and intensive workload. 
Some powerline segments cannot be regularly inspected due to the steep 
terrain and dense forest. With the advantages of low cost, flexible take- 
off and landing, safety, flying under clouds, and hyperspatial image 
resolution (Lin et al., 2012), unmanned aerial vehicle (UAV) remote 
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sensing has been increasingly used for powerline inspection. The optical 
images or videos of the powerline corridor are first caught using UAV- 
borne digital camera, and then the technical staff can directly observe 
and judge whether or not the neighboring trees have grown into the 
powerline safe space (Matikainen et al.,2016; Nguyen et al., 2018). 
Although the inspection efficiency and spatial accessibility are 
improved, the inspecting results are still affected by human factors. 
Actually, the 3D scene of powerline corridor can be reconstructed based 
on the overlapping UAV-acquired images using Structure from Motion 
(SfM) photogrammetry (Huang et al.,2021). Thus, the distances between 
the powerlines and the surrounding trees can be accurately measured, 
and the tree encroachment can be quantitatively detected. However, the 
powerline is often unable to be correctly matched between overlapping 
images due to its thin diameter, image quality, and scene complexity. 

In recent years, UAV-borne LiDAR has become the most popular tool 
for tree encroachment detection. The accurate 3D scene along the 
powerline corridor can be obtained using the laser ranging data and the 
instantaneous position of the LiDAR itself (Azevedo et al., 2019). Based 
on the resulting 3D point cloud, the powerlines can be correctly 
extracted (Cheng et al., 2014; Guan et al., 2016; Hartling et al., 2021), 
and the distances between the powerlines and the underneath forest can 
be precisely measured (Chen et al., 2018; Shi et al., 2020; Dihkan et al., 
2021). When the distance is less than the required safe value, the tree 
encroachment is believed to have occurred. Usually, the distances be-
tween each pair of powerline point and tree point are calculated in an 
ergodic way (Ding et al., 2018; Ruan et al., 2019), requiring a large 
amount of calculation. Fu et al. (2019) established the virtual grid of 
ground objects and calculated the distances between powerlines and 
grid cells to improve efficiency. Zhang et al. (2020a) segmented the 
powerlines and calculated the distances between powerline segments 
and underneath forest. Although the detection speed was accelerated, 
there existed the problem of missing detection. Therefore, the huge 
amount of data and calculation is always a big challenge in tree 
encroachment detection using laser scanned point cloud. 

In fact, the continuous growth of trees is the major reason why the 
powerline corridor needs periodical inspection. As the trees grow 
higher, the distances between the powerline and trees are reduced. As a 
result, the previous powerline inspection was out of date. Therefore, the 
powerlines have to be periodically inspected for new tree encroach-
ments. As the powerline segments occurring tree encroachment only 
account for a very small part, periodical inspections of the whole pow-
erline corridor are so inefficient and most inspections are in vain. Ac-
cording to the studies (Fox et al., 2001; Collet et al., 2006), tree growth 
also follows certain laws and can be modeled using some measurable 
factors including tree height, diameter at breast height (DBH), soil 
organic matter, sunlight, etc.. Tree growth models can be divided into 
two categories, namely empirical models and theoretical models. The 
empirical models are actually based on statistics, and require huge 
sample data (Calama et al.,2008). As for the theoretical models such as 
Richards model, their parameters generally have certain biological 
meanings (Shoda et al., 2020). Comparatively, they can better explain 
tree growth process and predict tree growth trend. Therefore, it seems a 
very promising method to predict tree height growth and detect po-
tential tree encroachments in advance. Huang et al. (2017) carried out 
early-warning analysis of tree barriers in the powerline corridor using 
Richards model, providing a reference framework for implementation. 
To deal with the oscillation of powerlines caused by the wind, Wu et al. 
(2021) combined a wire sag model with tree growth model to predict 
tree barriers more accurately. Thus powerline inspectors can be sent out 
to properly treat the predicted tree barriers (namely tree encroach-
ments), and the inspection efficiency will be greatly improved. How-
ever, the two studies have not incorporated the UAV-borne LiDAR and 
tackled the sharply increased amount of point data calculation caused by 
time series pre-detection of tree encroachments. 

In this paper, we aim to combine Richards growth model and UAV- 
borne LiDAR to realize early detection of tree encroachment in high 

voltage powerline corridor. The major contributions include: (1) sys-
tematically demonstrating the procedures of incorporating point cloud 
data into pre-detecting tree encroachments in the powerline corridor; 
(2) proving the optimum adaptability of Richards model in tree growth 
modeling, and establishing growth models of two tree species (Masson 
pine and Eucalyptus) to predict underneath tree heights more exactly; 
(3) applying bounding box-based two-phase algorithm to tackling the 
dramatically increased amount of point data calculation posed by long 
time series pre-detection of tree encroachments. 

2. Study area and data 

2.1. Study area 

As shown in Fig. 1a, the study area is located in Taining County, 
Fujian Province, China. This area has a typical subtropical monsoon 
climate with a mean annual temperature of 17 ◦C and a mean annual 
rainfall of 1,725 mm. The principle vegetation type is the evergreen 
broad-leaved forest which are usually distributed in the mid-subtropical 
zone. The dominant tree species in this region include Eucalyptus 
(Eucalyptus robusta Smith), Masson pine (Pinus massoniana Lamb), 
China fir (Cunninghamia lanceolata), etc. Passing across the mid-east of 
Taining County, the Chixin high voltage (220kv) powerlines has a length 
of 28 km, and the required safe clearance distance between the pow-
erlines and ground objects is 6 m. As indicated in Fig. 1b, one segment of 
Chixin powerlines and the neighborhood was chosen as the test site. The 
two towers at both ends, the powerlines, and the underneath forest can 
be observed in the orthoimage. The distance between the two towers is 
about 500 m. According to the field investigation, there are only two tree 
species in the underneath forest, namely Masson pine and Eucalyptus. 
Therefore, it is an ideal test site for studying on combining UAV-borne 
LiDAR and tree growth model to early detect tree encroachment. 

2.2. Data 

2.2.1. LiDAR point cloud 
The Tovos DroneScan loaded on the DJI Matrice 600 Pro was utilized 

to collect point cloud data of the test site. The drone is a 6-rotor aircraft 
with a load of up to 6 kg. The LiDAR has a scanning frequency of 
300,000 points per second, a scanning accuracy of 5 cm, and a weight of 
about 2.5 kg. During the UAV flight, the heading and side overlap rates 
were set to 80% and 90%, respectively. The flight speed was set to 1 m/s, 
and the relative flight altitude was 40 m. The data scanned and collected 
by the laser scanner was first recorded in raw format, and then resolved 
with the built-in software to obtain point cloud data in LAS format 
(ASPRS, 2005). As shown in Fig. 2, the acquired point cloud data in-
cludes powerlines, the two towers at both ends, and the underneath 
forest. The coordinate and projection system of the point cloud data and 
the above orthoimage is WGS 84/UTM 50 N. The elevations of the point 
cloud data range from 440 m to 540 m. 

2.2.2. Statistical data of tree plots 
According to similar site conditions, the local forestry authorities 

provided the statistical data of 217 plots of Masson pine and 166 plots of 
Eucalyptus tree respectively. As shown in Table 1, the age range of 
Masson pine plots is from 2 yr to 58 yr, and the corresponding tree 
height range is from 1.70 m to 24.55 m. The age range of Eucalyptus tree 
plots is from 3 yr to 50 yr, and the corresponding tree height range is 
from 3.0 m to 29.7 m. Among them, 80% will be used for growth model 
fitting and the rest 20% will be for model evaluation. 

3. Methods 

The procedures of early detecting tree encroachment in the power-
line corridor are as follows. First, the point cloud data needs to be pre-
processed to separately obtain the points of powerline and trees. The 3D 
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buffer of the powerline will be produced with the safe clearance dis-
tance, and segmented to generate the bounding boxes. The tree points 
will be segmented to extract individual trees and their heights. Secondly, 
the parameters of Richards growth model will be estimated based on the 
statistical data of tree plots. For a given time point in future, the indi-
vidual tree heights at that time will be acquired by combining the cur-
rent individual tree heights and the growth model. Then, the bounding 
boxes of individual trees at the given time point will be produced. 
Thirdly, the intersection test will be conducted between the bounding 
boxes of powerline buffer segments and individual trees. If the result is 

false, no tree encroachment occurs. Otherwise, the point distances be-
tween the two bounding boxes will be ergodically calculated and 
compared with the safe distance. If the distances are all bigger than the 
safe distance, there is no tree encroachment occurring. Otherwise, the 
tree encroachment does occur and the encroaching individual trees can 
be further identified. In real scenarios, multiple tree species and their 
growth models have to be dealt with. The overall flowchart is shown in 
Fig. 3. 

3.1. Point cloud preprocessing 

The raw point cloud data not only includes the powerlines and the 
vegetation, but also the irrelevant data such as non-ground points and 
surrounding objects. Before tree encroachment detection, the point 
cloud data needs to be preprocessed through denoising, filtering, and 
classification. 

3.1.1. Point cloud denoising 
While point cloud data are being scanned with UAV-borne LiDAR, 

Fig. 1. (a) The location of the study area, and (b) the orthoimage of the sample segment of powerline corridor.  

Fig. 2. The scanned point cloud of the sample segment of powerline corridor.  

Table 1 
The statistical data of tree plots of Masson pine and Eucalyptus.  

Tree species Plot number Age (yr) Height (m) 

Max. Min. Avg. Max. Min. Avg. 

Masson pine 217 58 2  26.55  24.55 1.7  15.7 
Eucalyptus 166 50 3  18.86  29.7 3  19.21  
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some point outliers will be produced by the internal instability of the 
device or the external factors such as flying birds and terrain fluctuation. 
These point outliers away from the whole point cloud data are often 
called noise points. For subsequent point cloud classification and 
bounding box generation, it is necessary to eliminate the point outliers. 
The statistical filtering (Li et al., 2016) is used to denoise the raw point 
cloud. This method makes a statistical analysis of the specified neigh-
borhood of each point and calculates its average distance to all adjacent 
points. The statistical result is assumed to satisfy the Gaussian distri-
bution, thus an interval can be defined with the global mean and stan-
dard deviation of the average distances. Each point with an average 
distance outside of the interval will be determined as an outlier and 
removed. 

3.1.2. Point cloud classification  

a) Point filtering. Point filtering is to separate ground points from non- 
ground points in point cloud data. The cloth filtering method by 
Zhang et al. (2016) is used to filter point cloud. The method assumes 
that the original terrain is flipped upside down and there is a virtual 
cloth of enough hardness above. The cloth will eventually fall and 
cover the flipped terrain surface due to the force of gravity. The final 
shape of the cloth is actually the Digital Elevation Model (DEM). The 
points on the DEM are determined as ground points, and the others 
are non-ground ones.  

b) Extraction of powerline points. Since the elevations of the powerline 
points are remarkably greater than those of other non-ground points, 

an elevation threshold can be set to only keep the powerline points 
and part of tower points. Then, the discrepancy of elevation change 
filtering method (DECF) is adopted to further separate powerline 
points from tower points. As the powerline between towers is usually 
a gentle curve, the elevation difference between powerline points is 
relatively small. Contrastively, the elevations of tower points have a 
significant variation in the vertical direction.  

c) Extraction of tree points. After powerline points have been extracted, 
the left non-ground points mainly include vegetation points and the 
lower half of tower points. Therefore, tree points can be acquired just 
by eliminating the tower points. The center coordinates of the tower 
are first obtained from the point cloud, and then a cylinder that can 
enclose the tower is generated. As there is usually no tree under the 
tower, the tree points can be obtained by removing all the points in 
the cylinder from the left non-ground points. 

3.2. Tree height prediction with growth model 

3.2.1. Tree growth model 
In the study, the growth models of the two tree species in the test site 

were established using the Richards model. It is a theoretical growth 
model obtained via mathematical deduction, and principally studies the 
relationship between tree age and tree height. Richards model is suitable 
for the simulation of both linear and nonlinear processes with relatively 
small growth rate (Wei et al., 2012). As tree growth is exactly a 
nonlinear process with this characteristic, Richards model is expected to 
make a good performance in this regard. The mathematical equation of 

Fig. 3. The flowchart for early detecting tree encroachment in the powerline corridor.  
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Richards model is as follows: 

y = a
(
1 − e− bt)c (1)  

Where t represents the tree age and y represents the tree height at t age; 
a, b, and c are model parameters. a is the maximum tree height, b is 
related to the tree growth rate, and c reflects the position of the inflec-
tion point in the growth curve. 

All of the model parameters in Eq. (1) have their own biological 
significance. The parameter b is determined by tree age, site conditions, 
average DBH and tree density. Among them the tree age has the greatest 
determination on the value of b. The exact position of inflection point 
influences the shape of the growth curve, therefore the parameter c is 
closely related to the accuracy of growth simulation. With different 
parameter values and their combinations, the models represent different 
biological growth. 

The specific values of model parameters will be estimated using the 
nonlinear least square method(LSM) (Wei et al.,2012), which is actually 
a mathematical optimization process. It obtains the best function 
matching of sample data by minimizing the sum of squares of errors. For 
nonlinear Richards model, we can use the Marquardt method 
(Fan,2012) to transform the nonlinear LSM problem into a series of 
linear LSM problem, which can subsequently be solved via iteration. The 
procedures of estimating the parameters in Eq. (1) are as follows:  

a) The initial parameter values of Richards growth model for one tree 
species are estimated according to the empirical values and the 
average tree heights at various ages.  

b) The Marquardt method is used to optimize the model parameters, 
and the tentative parameter values will be obtained.  

c) The fitting degree of the model with the tentative parameters is 
evaluated. If it does not meet the requirement, the procedure will go 
to previous step. 

According to the above steps, the Richards growth models of Masson 
pine and Eucalyptus are established with the estimated parameter values 
respectively. 

3.2.2. Tree height prediction 
In order to predict individual tree heights at the future time point 

using Richards growth model, the current ages and belonging species of 
individual trees should be determined. First, it is necessary to segment 
individual trees from the vegetation point cloud obtained in Section 
3.1.2. The normalized cut method proposed by Li et al.(2012) is used for 
this purpose. The local maximum points of the point cloud are extracted 
as the initial tree tops, which will be used as the seed points for subse-
quent iterative processing. The average half horizontal distance between 
the neighboring tree tops will be taken as the distance threshold. The 
circular region centered on the seed point expands outward, and the 
points falling in the projected cylinder are judged according to the dis-
tance threshold. If the distance of a point is less than the threshold value, 
the point is determined to belong to the current individual tree. If the 
point distance is greater than the threshold value, the point surely be-
longs to another individual tree. After segmenting individual trees from 
point cloud, their spatial positions and tree heights can be conveniently 
extracted. The belonging species (Masson pine or Eucalyptus) of indi-
vidual trees is determined by visual interpretation of the corresponding 
orthoimage and field investigation. 

Next, the current individual tree ages can be reversely calculated by 
inputting the individual tree heights into Richards growth models. The 
time span from the current to the given time point should be converted 
into a time length in year unit. The individual tree ages at the given time 
point can be obtained by adding the time span to the current individual 
tree ages. Lastly, the individual tree heights at the given time point can 
be achieved using Richards growth models of the corresponding tree 
species. 

3.3. Two-phase tree encroachment detection 

Tree encroachment detection in the powerline corridor is done by 
comparing the specified safe distance with the real distances between 
individual trees and powerlines. Traditionally, it needs to traverse and 
calculate the distance between each pair of powerline point and tree 
point. As the LiDAR points of powerlines and underneath trees are 
usually huge, the traditional method requires a large amount of calcu-
lations and takes a long time. To improve the calculation efficiency, the 
two-phase tree encroachment algorithm based on bounding boxes is 
applied. The tree encroachment detection in the powerline corridor will 
be transformed into the intersection tests between the bounding boxes 
enclosing powerlines and underneath individual trees. 

The bounding box is a commonly used tool in collision detection 
among 3D geometric objects. The basic idea is to enclose complex 
geometric objects with slightly larger and simple 3D geometric shapes 
such as cuboid, sphere, and cone (Palmer and Grimsdale, 1995; Gott-
schalk et al., 1996). Before the collision detection of two complex geo-
metric objects, the intersection test between the two bounding boxes 
enclosing them will be first carried out. If the bounding boxes are not 
intersected, the two geometric objects do not collide with each other for 
sure. Otherwise, the direct collision tests between the two geometric 
objects will be further performed. The intersection test between 
bounding boxes is much simpler and faster than the direct collision 
detection between complex geometric objects. As most geometric ob-
jects do not collide in real scenario, the bounding box-based intersection 
test can exclude overwhelming majority of nonintersecting objects. In 
this way, the total efficiency of collision detection is greatly improved. 

3.3.1. Bounding box generation 
The bounding boxes enclosing point cloud are mainly categorized 

into Axis-Aligned Bounding Box (AABB) and Oriented Bounding Box 
(OBB), etc. (Tang et al.,2018). As relatively easier to generate, the AABB 
is adopted in this study. The AABB is defined as the smallest hexahedron 
that encloses a point cloud object and each side of it is parallel to one of 
the X, Y and Z coordinate axes. The AABB of a given object is obtained by 
traversing all the points belonging to the object to find the maximum 
and minimum values of X, Y and Z coordinates of those points. The 6 
coordinate extreme values constitute the 8 vertices of the bounding box 
(Xing et al., 2010). 

Before detecting tree encroachment, the AABB bounding boxes 
should be generated for powerline points and vegetation points 
respectively. For the multilayer powerlines in vertical direction, only the 
powerline in the lowest lay is taken into consideration. The Euclidean 
clustering is first performed on the classified powerline points to sepa-
rate individual powerlines. The lowest powerline will be selected to 
generate a 3D buffer with a width of the required safe distance. The 
resulting buffer will be used as the enclosed geometric object to generate 
the bounding box of the corresponding powerline. To further improve 
the detection efficiency, the powerline buffer is segmented along the X 
axis. As shown in Fig. 4, it is actually the bounding boxes for the pow-
erline buffer segments that will be used for tree encroachment detection. 
However, the detection efficiency is not always improved with the 
increasing of the segment number. The appropriate number of segments 
needs to be determined through experiments. Comparatively, it is much 
simpler to generate the bounding boxes for individual trees (see Fig. 4), 
whose points have been separately extracted in Section 3.2.2. 

3.3.2. Bounding box intersection test 
The intersection test between two AABB bounding boxes is equiva-

lent to judging whether their projection intervals are simultaneously 
overlapped in the three coordinate axes. Every 4 sides of the AABB 
bounding box are parallel to the X, Y and Z coordinate axes respectively. 
The coordinates of the two end vortexes of the 4 sides determine the 
projection interval of the bounding box in the corresponding coordinate 
axis. Generally, the intersection test between two AABB bounding boxes 
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only needs 6 comparison operations at most (Yu et al., 2018). 
As shown in Fig. 5, the bounding box of one powerline buffer 

segment is denoted as P, and that of an individual tree is T. In most cases, 
P and T are not intersected (Fig. 5a). The P and T is intersected only if the 
Eqs. (2)–(4) are simultaneously satisfied. 

((Txmin > Pxmax||(Txmax < Pxmin)) == 0 (2)  

((Tymin > Pymax||(Tymax < Pymin)) == 0 (3)  

((Tzmin > Pzmax||(Tzmax < Pzmin)) == 0 (4)  

Where the subscripts xmin, xmax, ymin, ymax, zmin, and zmax represent 
the boundary values of the projection intervals of the two bounding 
boxes in the three coordinate axes respectively. 

In the case of tree encroachment detection, Eq. (4) can be further 
simplified as Eq. (5), because the trees can only encroach on the pow-
erline corridor from down to up direction. 

(Tzmax ≥ Pzmin) == 1 (5)  

3.3.3. Encroaching tree identification and verification 
For a pair of intersected bounding boxes (Fig. 5b,c), the distances 

between the points of the powerline segment and the individual tree will 
be calculated in an ergodic way. If any of them is less than the required 
safe value, the tree encroachment will be deemed to occur (Fig. 5c). 
When the tree encroachment is detected, the encroaching tree and its 
coordinate position will be conveniently acquired. Then the powerline 
inspector should be sent to verify it on site, as there is a possibility of 
false detection of tree encroachment. If the tree encroachment is veri-
fied, the identified encroaching trees will be felled accordingly. 

4. Experiments and results 

4.1. Classified and segmented point cloud 

As shown in Fig. 6, the point cloud of the powerline corridor was 
classified into ground, powerline, tower, and vegetation. The ground 
points was well separated from non-ground points using cloth filtering, 
even in the areas of steep terrain. Also, the powerline and the tower was 
well distinguished at the intersected parts using the DECF method. Thus, 
the points of the lowest powerline was further extracted. Although the 
vegetation was generally well extracted, some misclassifications 
occurred around the two towers. When the tower points were extracted, 
the vegetation points in the surrounding cylinder was falsely classified 
as the tower points. However, the misclassified vegetation points would 
not affect subsequent tree encroachment detection, as the vegetation 
nearby the towers was mostly low shrubs. 

According to the tree density in the test site, the distance threshold 
was set as 2 m in the individual tree segmentation. A total of 155 indi-
vidual trees were initially extracted from the vegetation points in the 
vicinity of the powerline corridor. Due to tree canopy occlusion and 
terrain influence, there existed some cases of insufficient segmentation 
or over- segmentation. According to visual judgment and field investi-
gation, 134 individual trees were finally retained, and the segmentation 
accuracy was 86.54%. As shown from the side view in Fig. 7a, the 
resulting individual trees were rendered in various colors. Among them, 
there were 87 Masson pine and 47 Eucalyptus. They were sequentially 
numbered and separately circled according to the tree species as seen in 
the top view (Fig. 7b). At the same time, the current individual tree 
heights were extracted. 

Fig. 4. The bounding boxes of powerline buffer segments and underneath individual trees.  

Fig. 5. Bounding box intersection test and tree encroachment detection. (a) P and T are not intersected; (b) P and T are intersected but tree encroachment does not 
occur; (c) P and T are intersected and tree encroachment occurs. 

Y. Chen et al.                                                                                                                                                                                                                                    



International Journal of Applied Earth Observation and Geoinformation 108 (2022) 102740

7

4.2. Fitted tree growth models 

With the tree plot statistical data, the Richards growth models of 
Masson pine and eucalyptus were separately fitted. The model param-
eters a, b, c of the two tree species were estimated as 21.221, 0.078, 
1.212, and 26.547, 0.118, 1.345 respectively. According to the fitting 
curves shown in Fig. 8a, b, the growth processes of the two tree species 
were generally similar, showing the characteristics from initially rapid 
to slow in middle, and finally convergent to the maximum heights. The 
deflection points of the curves both appeared around the age of 20 yr. 
But for specific growth stages, the two tree species were somewhat 

different. First, the model parameter a showed that the maximum tree 
heights of Masson pine and eucalyptus were 21.221 m and 26.547 m, 
respectively. Secondly, the eucalyptus grew rapidly in the young ages, 
especially between 5 yr and 15 yr. 

4.3. Pre-detected tree encroachment 

With the two fitted Richards growth models, we acquired the indi-
vidual tree heights in the powerline corridor in the next 10 years (year 
0 represented the current year). Then, the Z coordinate values of the 
points belonging to the individual trees were added with the 

Fig. 6. Classified point cloud of the powerline corridor.  

Fig. 7. Individual trees rendered in colors: (a) from the side view; (b) numbered and circled tree species from the top view; (c) one rectangular part of the top view 
was zoomed in. 

Fig. 8. The fitting curves of Richards growth models of Masson pine and Eucalyptus.  
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corresponding tree height increment. The bounding boxes of the indi-
vidual trees were normally generated for the current year. For the sub-
sequent years, the bounding boxes only needed to add the corresponding 
tree height increment in the Z axis. The 3D buffer with a radius of 6 m 
(the required safe distance) was generated for the powerline in the 
corridor. After repeated experiments, 50 m was found to be an appro-
priate unit length of segment to attain fair efficiency. Therefore, the 
powerline buffer was divided into 10 segments, and their bounding 
boxes were then produced. Lastly, the two-phase tree encroachment 
detection method was used to detect the unsafe points and identify the 
trees encroaching into the powerline corridor. The encroaching points in 
year 0, 1, 2, 5 and 10 were shown in Fig. 9a from the top view and Fig. 9b 
from the side view. Moreover, the corresponding encroaching individual 
trees were also identified, which were indicated in Fig. 10a from the top 
view and Fig. 10b from the side view. 

According to Table 2 and year 0 in Fig. 9, there were tree en-
croachments occurring in current conditions, which were mainly 
distributed in the two regions with high elevations. Among them, the 
clearance distances between the powerline and trees ranged from 3.94 m 
to 5.67 m. In the following two years, although the detected unsafe 
points increased (Fig. 9), the detected encroaching trees did not change 
(Fig. 10). From year 3, there was basically one or more new encroaching 
trees every year. Therefore, it was necessary to model the tree growth 
and applied the results to early detection and warning of tree 
encroachment. As shown in Table 2, most of the new encroaching trees 
are Eucalyptus. This is because Eucalyptus is a fast-growing tree species, 
and the local subtropical climate is very suitable for its growth. There-
fore, Eucalyptus should be taken as the key tree species while detecting 
tree encroachment in the powerline corridors of this region. 

In practice, once the tree encroachment is pre-detected at the given 
time point, the powerline inspector should be sent to verify it on site 
when the time point comes into present. If the tree encroachment does 

occur, the identified encroaching trees will be felled. Thus, the under-
neath forest in the powerline corridor has been changed. Alternatively, 
all these pre-detected encroaching trees can be removed at one time to 
ensure the local safety of power transmission in the next 10 years. 
Whether potential encroaching trees are permitted to be felled and how 
long is the future time span will be determined by the policies coordi-
nately formulated by local electric power sector and forestry authorities. 
Anyhow, the manual and financial cost of powerline inspection will be 
substantially reduced. 

4.4. Accuracy assessment 

It is generally difficult to assess the accuracy of tree encroachment 
detection at a given time point of years later. Actually, the final accuracy 
mostly depends on the accuracy of the extracted individual tree heights 
and the fitting degrees of Richards growth models. 

4.4.1. Accuracy of extracted individual tree heights 
From the extracted individual trees in the powerline corridor, 55 

sample trees were selected to measure their real heights in the field. The 
composition of tree species and the spatial distribution of sample trees 
were also considered in the selection. Then the heights extracted from 
tree points were assessed against the measured ones. The coefficient of 
determination (R2) and root mean square error (RMSE) were used as the 
criteria. As shown in Fig. 11, the R2 was 0.923 and the RMSE was 1.107 
m, which indicated that there was a high correlation between the 
extracted and measured tree heights. Therefore, the extracted individual 
tree heights could basically satisfy the requirements of predicting indi-
vidual tree heights with Richards growth model. 

4.4.2. Fitting degrees of Richards growth models 
As mentioned in Section 2.2.2, the rest 20% plot data of the two tree 

Fig. 9. Detected encroaching points in year 0, 1, 2, 5 and 10. (a) from the top view; (b) from the side view.  
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species were used to evaluate the fitting degrees of Richards growth 
models in Fig. 8. As shown in Fig. 12, the R2 of Richards model of Masson 
pine and Eucalyptus were 0.812 and 0.861, and the RMSE were 2.308 m 
and 2.556 m, which were relatively small compared with the mean tree 
heights. Therefore, the two Richards growth models demonstrated good 
fitting degrees, and suitable for predicting the individual tree heights at 
the given time points in the future. 

Fig. 10. Identified encroaching individual trees in year 0, 1, 2, 5 and 10. (a) from the top view; (b) from the side view.  

Table 2 
The data of pre-identified encroaching trees in the sample segment of the 
powerline corridor.  

Tree 
No. 

Tree 
species 

Tree Coordinate (x, y) Time point 
in future 
(yr) 

Clearance 
distance (m) 

17 Masson 
pine 

516003.63,2958399.25 0  5.12 

18 Masson 
pine 

516004.97,2958392.75 0  4.12 

20 Masson 
pine 

516006.47,2958388.25 0  3.94 

24 Masson 
pine 

516024.84,2958372.75 0  4.62 

29 Masson 
pine 

516005.88,2958370.25 0  4.33 

32 Eucalyptus 516017.38,2958362.51 0  4.58 
33 Eucalyptus 516016.16,2958401.27 0  4.38 
36 Masson 

pine 
516004.51,2958365.12 0  5.22 

42 Eucalyptus 516027.16,2958387.51 0  4.47 
43 Masson 

pine 
516027.53,2958382.75 0  5.67 

124 Masson 
pine 

516103.25,2958632.33 0  5.41 

23 Eucalyptus 516032.06,2958410.25 3  4.67 
41 Eucalyptus 516014.53,2958418.14 4  5.82 
67 Eucalyptus 515998.97,,2958377.98 5  5.80 
75 Eucalyptus 516025.84,2958420.58 5  5.08 
80 Eucalyptus 516104.09,2958625.20 5  5.78 
28 Eucalyptus 516000.38,2958372.75 6  5.87 
53 Eucalyptus 516004.88,2958356.75 6  5.47 
71 Eucalyptus 516008.19,2958336.53 8  5.27 
95 Eucalyptus 516036.63,2958423.75 10  5.74 
118 Masson 

pine 
516111.53,2958633.58 10  5.92  

Fig. 11. Accuracy assessment of extracted individual tree heights from 
point cloud. 
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5. Discussion 

5.1. Comparison of tree growth models 

We chose the other four popular tree growth models including two 
theoretical models(Logistic and Gompertz) and two empirical models 
(Hyperbolic and Schumacher) to compare their adaptabilities in 
modelling tree growth with Richards model. Their model equations and 
parameters were listed in Table 3 (Fekedulegn et al., 1999; Abrantes 
et al., 2019). The parameters of the two theoretical models had the same 
biological significances as Richards model (see Section 3.2.1). But for 
the two empirical models, their parameters had no biological 
significance. 

The five tree growth models were separately fitted with the 80% tree 
plot data of Masson pine and Eucalyptus. As shown in Fig. 13a, b, the 
five fitting curves of each tree species had a generally similar pattern at 
the three growth stages (young, middle, and old age). Normally, a 
complete growth curve should satisfy the two boundary constraints: y(t) 
= 0 when t approaches zero; y(t) = A when t approaches infinity (A is a 
constant value, namely the maximum possible tree height of a tree 
species). According to the starting ends of the five fitting curves, the 
Richards, Hyperbolic and Schumacher models exhibited a natural ten-
dency to be 0 m when the tree age approached zero, but the Logistic and 
Gompertz models did not. As for the terminal ends of those fitting 
curves, the Richards, Logistic and Gompertz models indicated a ten-
dency to converge to a constant height, but Hyperbolic and Schumacher 
models did not. Only Richards model fairly satisfied the aforementioned 
two constraint conditions. In addition, as listed in Fig. 13a, b, Richards 
model had the highest R2 (0.831 and 0.855) and the lowest RMSE 
(2.189 m and 2.876 m) among the five growth models for Masson pine 
and eucalyptus, respectively. Therefore, Richards growth model 

demonstrated the optimum adaptability for modelling tree growth in the 
study area among the five growth models. 

5.2. Comparison of algorithm performances 

In the study, the point traversal algorithm and two-phase algorithm 
for tree encroachment detection were implemented using C++ pro-
gramming language and point cloud library (PCL). We first compared 
their processing time consumptions at the time points of year 0, 1, 2, 5, 
and 7. As shown in Fig. 14a, the average time consumptions of point 
traversal algorithm and two-phase algorithm were about 760 s and 10 s, 
respectively. The former was nearly 76 times of the latter. Moreover, the 
time consumption of two-phase algorithm decreased from year 1 to 7. 
That was because it spent more time on bounding box generation for 
individual trees in year 0(Fig. 14b). Thereafter, the new bounding boxes 
for individual trees were simply generated by adding the increment of 
predicted tree heights to the original ones in the Z axis. 

To further compare the performances of the two algorithms with the 
increase of point number, the other 4 segments of the Chixin powerlines 
were selected and numbered from 2 to 5. Likely, the dominant tree 
species in their underneath forest were Masson pine and Eucalyptus. As 
shown in Fig. 15a, their processing time consumptions generally 
increased with the increment of point number. Furthermore, the former 
increased significantly more than the latter. However, the Segment 4, 5 
were seemingly not in line with this trend. It was because the point 
numbers listed in Fig. 15a were actually the tree points in those seg-
ments. But the total time consumption was jointly decided by both tree 
points and powerline points. As seen in Fig. 15b, the point number of 
powerlines in Segment 4, 5 had a marked increase. Additionally, the 
processing time of two-phase algorithm largely depended on the number 
of initial and intersected bounding boxes. In sum, the two-phase algo-
rithm further outperformed point traversal algorithm with the increase 
of point number. 

5.3. Error sources and potential improvements 

Although the proposed method of early detecting tree encroachment 
in powerline corridor using growth model and UAV-borne LiDAR was 
effective and efficient, there were still some factors that probably 
affected its applications. For instance, the tree species of segmented 
individual trees were determined by combining visual interpretation 
and field investigation, and it was not applicable for long-distance 
powerline corridors. Although the accuracy of extracted individual 
tree height was relatively high, some errors were unavoidably 

Fig. 12. Fitting degree evaluation of Richards growth models of Masson pine and Eucalyptus.  

Table 3 
The equations and parameters of the other four tree growth models.  

Model name Model 
equation 

Model type Model parameters 

Logistic y = a/(1 +

be− ct)

Theoretical a, b, and c have the same biological 
significances as Richards model. 

Gompertz y = ae− be− ct Theoretical a, b, and c have the same biological 
significances as Richards model. 

Hyperbolic y =

a − b/(t+c)
Empirical a, b, and c have no biological 

significances. 
Schumacher y = ae− b/t Empirical a and b have no biological 

significances. 

t is the tree age and y represents the tree height at t age. 
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transferred to the predicted individual tree heights at given time points. 
Additionally, the Richards growth models were fitted with the tree plot 
data of Masson pine and Eucalyptus, but the site conditions of the tree 
plots were not completely consistent with those of the individual trees in 
the powerline corridor. Therefore, some uncertainties were inevitably 
induced into the individual tree heights predicted by the Richards 
growth models. In this study, it was assumed that the 3D position of the 
powerlines was fixed and stable. However, in reality the status of the 
powerlines would slightly oscillate with changes of environmental 
conditions such as the temperature and the wind (Zhang et al., 2020b). 

Nevertheless, some measures could be taken to further improve the 
early detection of tree encroachment. For example, point cloud data can 
be used to extract structural parameters and morphological features of 
individual trees, and the tree species can be automatically recognized 
using the corresponding classifiers (Chen et al., 2019). Furthermore, 
there have been many studies on the application of machine learning or 
deep learning to intelligent tree species classification (Kattenborn et al., 
2021). In addition, the hierarchical bounding boxes can be generated to 
enclose the individual tree structure, so as to further reduce the time 
complexity of intersection test and improve efficiency (Yu et al., 2018). 
Lastly, the status variation of powerlines in various environmental 

conditions can be modeled (Jaw and Sohn, 2017), and integrated into 
our method in the future research. Anyway, it is very important to verify 
the early detected tree encroachment on site, and make corresponding 
treatments. 

6. Conclusions 

In this study, we attempted to apply UAV-borne LiDAR and tree 
growth model to early detecting tree encroachment in high voltage 
powerline corridor. The major conclusions we reached are as follows:  

• UAV-borne LiDAR is a powerful technique to acquire point cloud 
data of the powerline corridor, from which the individual trees and 
their heights can be accurately extracted. The R2 of the extracted 
individual tree heights was 0.923 and the RMSE was 1.107 m.  

• Among the five theoretical and empirical tree growth models, 
Richards model demonstrated the optimum adaptability for model-
ling tree growth. Only Richards model simultaneously satisfied the 
two constraint conditions, and its fitting curve had the highest R2 

(0.831 and 0.855) and the lowest RMSE (2.189 m and 2.876 m) for 
Masson pine and eucalyptus, respectively. 

Fig.13. Fitting curves of the five growth models of Masson pine and Eucalyptus.  

Fig. 14. Processing time consumptions in serial time points. (a) traversal algorithm and two-phase algorithm; (b) bounding box generation and two-phase detection.  

Y. Chen et al.                                                                                                                                                                                                                                    



International Journal of Applied Earth Observation and Geoinformation 108 (2022) 102740

12

• Compared with point traversal algorithm, the calculation efficiency 
of the bounding box-based two-phase algorithm for tree encroach-
ment detection was improved by nearly 76 times on average. 50 m 
was found to be an appropriate unit length for segmenting 3D 
powerline buffer through repeated experiments.  

• Once potential tree encroachments are pre-detected in powerline 
corridors at a future time point, the powerline inspectors can be sent 
out to verify and fell encroaching trees when the time point comes 
into present. The powerline inspection becomes targeted, avoiding 
periodically inspecting the whole corridors, thus the inspection ef-
ficiency will be greatly improved. 

Although our study provides the effective method to early detect tree 
encroachment in powerline corridors using a UAV-borne LiDAR, there 
were some factors that affected its applications including non- 
automated tree species recognition, errors in individual tree height 
extraction and prediction, and unstable positions of powerlines, and so 
forth. Therefore, it is still a very challenging task to accurately detect 
tree encroachment in powerline corridors at the early stage. In practice, 
we have to confirm the pre-detected tree encroachments on site and 
make proper treatments. In future studies, the intelligent recognition of 
underneath tree species should be taken into consideration and the 
statuses of powerlines varying with environmental conditions should be 
modeled. 
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